Metamath Proof Explorer


Theorem sscfn2

Description: The subcategory subset relation is defined on functions with square domain. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses sscfn1.1 φHcatJ
sscfn2.2 φT=domdomJ
Assertion sscfn2 φJFnT×T

Proof

Step Hyp Ref Expression
1 sscfn1.1 φHcatJ
2 sscfn2.2 φT=domdomJ
3 brssc HcatJtJFnt×ty𝒫tHxy×y𝒫Jx
4 1 3 sylib φtJFnt×ty𝒫tHxy×y𝒫Jx
5 simpr φJFnt×tJFnt×t
6 2 adantr φJFnt×tT=domdomJ
7 fndm JFnt×tdomJ=t×t
8 7 adantl φJFnt×tdomJ=t×t
9 8 dmeqd φJFnt×tdomdomJ=domt×t
10 dmxpid domt×t=t
11 9 10 eqtrdi φJFnt×tdomdomJ=t
12 6 11 eqtr2d φJFnt×tt=T
13 12 sqxpeqd φJFnt×tt×t=T×T
14 13 fneq2d φJFnt×tJFnt×tJFnT×T
15 5 14 mpbid φJFnt×tJFnT×T
16 15 ex φJFnt×tJFnT×T
17 16 adantrd φJFnt×ty𝒫tHxy×y𝒫JxJFnT×T
18 17 exlimdv φtJFnt×ty𝒫tHxy×y𝒫JxJFnT×T
19 4 18 mpd φJFnT×T