Step |
Hyp |
Ref |
Expression |
1 |
|
idfusubc.s |
⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) |
2 |
|
idfusubc.i |
⊢ 𝐼 = ( idfunc ‘ 𝑆 ) |
3 |
|
idfusubc.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
4 |
1 2 3
|
idfusubc0 |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
6 |
|
subcrcl |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐶 ∈ Cat ) |
7 |
|
id |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) |
8 |
|
eqidd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐽 = dom dom 𝐽 ) |
9 |
7 8
|
subcfn |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 Fn ( dom dom 𝐽 × dom dom 𝐽 ) ) |
10 |
7 9 5
|
subcss1 |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → dom dom 𝐽 ⊆ ( Base ‘ 𝐶 ) ) |
11 |
1 5 6 9 10
|
reschom |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐽 = ( Hom ‘ 𝑆 ) ) |
12 |
11
|
eqcomd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( Hom ‘ 𝑆 ) = 𝐽 ) |
13 |
12
|
oveqd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) = ( 𝑥 𝐽 𝑦 ) ) |
14 |
13
|
reseq2d |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) = ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) |
15 |
14
|
mpoeq3dv |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) ) |
16 |
15
|
opeq2d |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 ( Hom ‘ 𝑆 ) 𝑦 ) ) ) 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
17 |
4 16
|
eqtrd |
⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → 𝐼 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |