Metamath Proof Explorer


Theorem fldcatALTV

Description: The restriction of the category of (unital) rings to the set of field homomorphisms is a category, the "category of fields". (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c 𝐶 = ( 𝑈 ∩ DivRing )
drhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
fldhmsubcALTV.d 𝐷 = ( 𝑈 ∩ Field )
fldhmsubcALTV.f 𝐹 = ( 𝑟𝐷 , 𝑠𝐷 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion fldcatALTV ( 𝑈𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c 𝐶 = ( 𝑈 ∩ DivRing )
2 drhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
3 fldhmsubcALTV.d 𝐷 = ( 𝑈 ∩ Field )
4 fldhmsubcALTV.f 𝐹 = ( 𝑟𝐷 , 𝑠𝐷 ↦ ( 𝑟 RingHom 𝑠 ) )
5 isfld ( 𝑟 ∈ Field ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) )
6 crngring ( 𝑟 ∈ CRing → 𝑟 ∈ Ring )
7 6 adantl ( ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) → 𝑟 ∈ Ring )
8 5 7 sylbi ( 𝑟 ∈ Field → 𝑟 ∈ Ring )
9 8 rgen 𝑟 ∈ Field 𝑟 ∈ Ring
10 9 3 4 sringcatALTV ( 𝑈𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat )