| Step |
Hyp |
Ref |
Expression |
| 1 |
|
drhmsubcALTV.c |
⊢ 𝐶 = ( 𝑈 ∩ DivRing ) |
| 2 |
|
drhmsubcALTV.j |
⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) |
| 3 |
|
fldhmsubcALTV.d |
⊢ 𝐷 = ( 𝑈 ∩ Field ) |
| 4 |
|
fldhmsubcALTV.f |
⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) |
| 5 |
|
isfld |
⊢ ( 𝑟 ∈ Field ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) ) |
| 6 |
|
crngring |
⊢ ( 𝑟 ∈ CRing → 𝑟 ∈ Ring ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) → 𝑟 ∈ Ring ) |
| 8 |
5 7
|
sylbi |
⊢ ( 𝑟 ∈ Field → 𝑟 ∈ Ring ) |
| 9 |
8
|
rgen |
⊢ ∀ 𝑟 ∈ Field 𝑟 ∈ Ring |
| 10 |
9 3 4
|
sringcatALTV |
⊢ ( 𝑈 ∈ 𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat ) |