Step |
Hyp |
Ref |
Expression |
1 |
|
drhmsubcALTV.c |
⊢ 𝐶 = ( 𝑈 ∩ DivRing ) |
2 |
|
drhmsubcALTV.j |
⊢ 𝐽 = ( 𝑟 ∈ 𝐶 , 𝑠 ∈ 𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) |
3 |
|
fldhmsubcALTV.d |
⊢ 𝐷 = ( 𝑈 ∩ Field ) |
4 |
|
fldhmsubcALTV.f |
⊢ 𝐹 = ( 𝑟 ∈ 𝐷 , 𝑠 ∈ 𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) |
5 |
|
fvexd |
⊢ ( 𝑈 ∈ 𝑉 → ( RingCatALTV ‘ 𝑈 ) ∈ V ) |
6 |
|
ovex |
⊢ ( 𝑟 RingHom 𝑠 ) ∈ V |
7 |
2 6
|
fnmpoi |
⊢ 𝐽 Fn ( 𝐶 × 𝐶 ) |
8 |
7
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐽 Fn ( 𝐶 × 𝐶 ) ) |
9 |
4 6
|
fnmpoi |
⊢ 𝐹 Fn ( 𝐷 × 𝐷 ) |
10 |
9
|
a1i |
⊢ ( 𝑈 ∈ 𝑉 → 𝐹 Fn ( 𝐷 × 𝐷 ) ) |
11 |
|
inex1g |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ DivRing ) ∈ V ) |
12 |
1 11
|
eqeltrid |
⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ V ) |
13 |
|
df-field |
⊢ Field = ( DivRing ∩ CRing ) |
14 |
|
inss1 |
⊢ ( DivRing ∩ CRing ) ⊆ DivRing |
15 |
13 14
|
eqsstri |
⊢ Field ⊆ DivRing |
16 |
|
sslin |
⊢ ( Field ⊆ DivRing → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
17 |
15 16
|
mp1i |
⊢ ( 𝑈 ∈ 𝑉 → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) ) |
18 |
17 3 1
|
3sstr4g |
⊢ ( 𝑈 ∈ 𝑉 → 𝐷 ⊆ 𝐶 ) |
19 |
5 8 10 12 18
|
rescabs |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ↾cat 𝐹 ) = ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐹 ) ) |
20 |
1 2 3 4
|
fldcatALTV |
⊢ ( 𝑈 ∈ 𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐹 ) ∈ Cat ) |
21 |
19 20
|
eqeltrd |
⊢ ( 𝑈 ∈ 𝑉 → ( ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ↾cat 𝐹 ) ∈ Cat ) |