Step |
Hyp |
Ref |
Expression |
1 |
|
drhmsubcALTV.c |
|- C = ( U i^i DivRing ) |
2 |
|
drhmsubcALTV.j |
|- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
3 |
|
fldhmsubcALTV.d |
|- D = ( U i^i Field ) |
4 |
|
fldhmsubcALTV.f |
|- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
5 |
|
fvexd |
|- ( U e. V -> ( RingCatALTV ` U ) e. _V ) |
6 |
|
ovex |
|- ( r RingHom s ) e. _V |
7 |
2 6
|
fnmpoi |
|- J Fn ( C X. C ) |
8 |
7
|
a1i |
|- ( U e. V -> J Fn ( C X. C ) ) |
9 |
4 6
|
fnmpoi |
|- F Fn ( D X. D ) |
10 |
9
|
a1i |
|- ( U e. V -> F Fn ( D X. D ) ) |
11 |
|
inex1g |
|- ( U e. V -> ( U i^i DivRing ) e. _V ) |
12 |
1 11
|
eqeltrid |
|- ( U e. V -> C e. _V ) |
13 |
|
df-field |
|- Field = ( DivRing i^i CRing ) |
14 |
|
inss1 |
|- ( DivRing i^i CRing ) C_ DivRing |
15 |
13 14
|
eqsstri |
|- Field C_ DivRing |
16 |
|
sslin |
|- ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
17 |
15 16
|
mp1i |
|- ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
18 |
17 3 1
|
3sstr4g |
|- ( U e. V -> D C_ C ) |
19 |
5 8 10 12 18
|
rescabs |
|- ( U e. V -> ( ( ( RingCatALTV ` U ) |`cat J ) |`cat F ) = ( ( RingCatALTV ` U ) |`cat F ) ) |
20 |
1 2 3 4
|
fldcatALTV |
|- ( U e. V -> ( ( RingCatALTV ` U ) |`cat F ) e. Cat ) |
21 |
19 20
|
eqeltrd |
|- ( U e. V -> ( ( ( RingCatALTV ` U ) |`cat J ) |`cat F ) e. Cat ) |