| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drhmsubcALTV.c |  |-  C = ( U i^i DivRing ) | 
						
							| 2 |  | drhmsubcALTV.j |  |-  J = ( r e. C , s e. C |-> ( r RingHom s ) ) | 
						
							| 3 |  | fldhmsubcALTV.d |  |-  D = ( U i^i Field ) | 
						
							| 4 |  | fldhmsubcALTV.f |  |-  F = ( r e. D , s e. D |-> ( r RingHom s ) ) | 
						
							| 5 |  | elin |  |-  ( r e. ( DivRing i^i CRing ) <-> ( r e. DivRing /\ r e. CRing ) ) | 
						
							| 6 | 5 | simprbi |  |-  ( r e. ( DivRing i^i CRing ) -> r e. CRing ) | 
						
							| 7 |  | crngring |  |-  ( r e. CRing -> r e. Ring ) | 
						
							| 8 | 6 7 | syl |  |-  ( r e. ( DivRing i^i CRing ) -> r e. Ring ) | 
						
							| 9 |  | df-field |  |-  Field = ( DivRing i^i CRing ) | 
						
							| 10 | 8 9 | eleq2s |  |-  ( r e. Field -> r e. Ring ) | 
						
							| 11 | 10 | rgen |  |-  A. r e. Field r e. Ring | 
						
							| 12 | 11 3 4 | srhmsubcALTV |  |-  ( U e. V -> F e. ( Subcat ` ( RingCatALTV ` U ) ) ) | 
						
							| 13 |  | inss1 |  |-  ( DivRing i^i CRing ) C_ DivRing | 
						
							| 14 | 9 13 | eqsstri |  |-  Field C_ DivRing | 
						
							| 15 |  | sslin |  |-  ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( U i^i Field ) C_ ( U i^i DivRing ) | 
						
							| 17 | 16 | a1i |  |-  ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) ) | 
						
							| 18 | 3 1 | sseq12i |  |-  ( D C_ C <-> ( U i^i Field ) C_ ( U i^i DivRing ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( U e. V -> D C_ C ) | 
						
							| 20 |  | ssidd |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) C_ ( x RingHom y ) ) | 
						
							| 21 | 4 | a1i |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> F = ( r e. D , s e. D |-> ( r RingHom s ) ) ) | 
						
							| 22 |  | oveq12 |  |-  ( ( r = x /\ s = y ) -> ( r RingHom s ) = ( x RingHom y ) ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( U e. V /\ ( x e. D /\ y e. D ) ) /\ ( r = x /\ s = y ) ) -> ( r RingHom s ) = ( x RingHom y ) ) | 
						
							| 24 |  | simprl |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. D ) | 
						
							| 25 |  | simpr |  |-  ( ( x e. D /\ y e. D ) -> y e. D ) | 
						
							| 26 | 25 | adantl |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. D ) | 
						
							| 27 |  | ovexd |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) e. _V ) | 
						
							| 28 | 21 23 24 26 27 | ovmpod |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) = ( x RingHom y ) ) | 
						
							| 29 | 2 | a1i |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> J = ( r e. C , s e. C |-> ( r RingHom s ) ) ) | 
						
							| 30 | 16 18 | mpbir |  |-  D C_ C | 
						
							| 31 | 30 | sseli |  |-  ( x e. D -> x e. C ) | 
						
							| 32 | 31 | ad2antrl |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. C ) | 
						
							| 33 | 30 | sseli |  |-  ( y e. D -> y e. C ) | 
						
							| 34 | 33 | adantl |  |-  ( ( x e. D /\ y e. D ) -> y e. C ) | 
						
							| 35 | 34 | adantl |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. C ) | 
						
							| 36 | 29 23 32 35 27 | ovmpod |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x J y ) = ( x RingHom y ) ) | 
						
							| 37 | 20 28 36 | 3sstr4d |  |-  ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) C_ ( x J y ) ) | 
						
							| 38 | 37 | ralrimivva |  |-  ( U e. V -> A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) | 
						
							| 39 |  | ovex |  |-  ( r RingHom s ) e. _V | 
						
							| 40 | 4 39 | fnmpoi |  |-  F Fn ( D X. D ) | 
						
							| 41 | 40 | a1i |  |-  ( U e. V -> F Fn ( D X. D ) ) | 
						
							| 42 | 2 39 | fnmpoi |  |-  J Fn ( C X. C ) | 
						
							| 43 | 42 | a1i |  |-  ( U e. V -> J Fn ( C X. C ) ) | 
						
							| 44 |  | inex1g |  |-  ( U e. V -> ( U i^i DivRing ) e. _V ) | 
						
							| 45 | 1 44 | eqeltrid |  |-  ( U e. V -> C e. _V ) | 
						
							| 46 | 41 43 45 | isssc |  |-  ( U e. V -> ( F C_cat J <-> ( D C_ C /\ A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) ) ) | 
						
							| 47 | 19 38 46 | mpbir2and |  |-  ( U e. V -> F C_cat J ) | 
						
							| 48 | 1 2 | drhmsubcALTV |  |-  ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) ) | 
						
							| 49 |  | eqid |  |-  ( ( RingCatALTV ` U ) |`cat J ) = ( ( RingCatALTV ` U ) |`cat J ) | 
						
							| 50 | 49 | subsubc |  |-  ( J e. ( Subcat ` ( RingCatALTV ` U ) ) -> ( F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCatALTV ` U ) ) /\ F C_cat J ) ) ) | 
						
							| 51 | 48 50 | syl |  |-  ( U e. V -> ( F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCatALTV ` U ) ) /\ F C_cat J ) ) ) | 
						
							| 52 | 12 47 51 | mpbir2and |  |-  ( U e. V -> F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) ) |