Step |
Hyp |
Ref |
Expression |
1 |
|
drhmsubcALTV.c |
|- C = ( U i^i DivRing ) |
2 |
|
drhmsubcALTV.j |
|- J = ( r e. C , s e. C |-> ( r RingHom s ) ) |
3 |
|
fldhmsubcALTV.d |
|- D = ( U i^i Field ) |
4 |
|
fldhmsubcALTV.f |
|- F = ( r e. D , s e. D |-> ( r RingHom s ) ) |
5 |
|
elin |
|- ( r e. ( DivRing i^i CRing ) <-> ( r e. DivRing /\ r e. CRing ) ) |
6 |
5
|
simprbi |
|- ( r e. ( DivRing i^i CRing ) -> r e. CRing ) |
7 |
|
crngring |
|- ( r e. CRing -> r e. Ring ) |
8 |
6 7
|
syl |
|- ( r e. ( DivRing i^i CRing ) -> r e. Ring ) |
9 |
|
df-field |
|- Field = ( DivRing i^i CRing ) |
10 |
8 9
|
eleq2s |
|- ( r e. Field -> r e. Ring ) |
11 |
10
|
rgen |
|- A. r e. Field r e. Ring |
12 |
11 3 4
|
srhmsubcALTV |
|- ( U e. V -> F e. ( Subcat ` ( RingCatALTV ` U ) ) ) |
13 |
|
inss1 |
|- ( DivRing i^i CRing ) C_ DivRing |
14 |
9 13
|
eqsstri |
|- Field C_ DivRing |
15 |
|
sslin |
|- ( Field C_ DivRing -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
16 |
14 15
|
ax-mp |
|- ( U i^i Field ) C_ ( U i^i DivRing ) |
17 |
16
|
a1i |
|- ( U e. V -> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
18 |
3 1
|
sseq12i |
|- ( D C_ C <-> ( U i^i Field ) C_ ( U i^i DivRing ) ) |
19 |
17 18
|
sylibr |
|- ( U e. V -> D C_ C ) |
20 |
|
ssidd |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) C_ ( x RingHom y ) ) |
21 |
4
|
a1i |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> F = ( r e. D , s e. D |-> ( r RingHom s ) ) ) |
22 |
|
oveq12 |
|- ( ( r = x /\ s = y ) -> ( r RingHom s ) = ( x RingHom y ) ) |
23 |
22
|
adantl |
|- ( ( ( U e. V /\ ( x e. D /\ y e. D ) ) /\ ( r = x /\ s = y ) ) -> ( r RingHom s ) = ( x RingHom y ) ) |
24 |
|
simprl |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. D ) |
25 |
|
simpr |
|- ( ( x e. D /\ y e. D ) -> y e. D ) |
26 |
25
|
adantl |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. D ) |
27 |
|
ovexd |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x RingHom y ) e. _V ) |
28 |
21 23 24 26 27
|
ovmpod |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) = ( x RingHom y ) ) |
29 |
2
|
a1i |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> J = ( r e. C , s e. C |-> ( r RingHom s ) ) ) |
30 |
16 18
|
mpbir |
|- D C_ C |
31 |
30
|
sseli |
|- ( x e. D -> x e. C ) |
32 |
31
|
ad2antrl |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> x e. C ) |
33 |
30
|
sseli |
|- ( y e. D -> y e. C ) |
34 |
33
|
adantl |
|- ( ( x e. D /\ y e. D ) -> y e. C ) |
35 |
34
|
adantl |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> y e. C ) |
36 |
29 23 32 35 27
|
ovmpod |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x J y ) = ( x RingHom y ) ) |
37 |
20 28 36
|
3sstr4d |
|- ( ( U e. V /\ ( x e. D /\ y e. D ) ) -> ( x F y ) C_ ( x J y ) ) |
38 |
37
|
ralrimivva |
|- ( U e. V -> A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) |
39 |
|
ovex |
|- ( r RingHom s ) e. _V |
40 |
4 39
|
fnmpoi |
|- F Fn ( D X. D ) |
41 |
40
|
a1i |
|- ( U e. V -> F Fn ( D X. D ) ) |
42 |
2 39
|
fnmpoi |
|- J Fn ( C X. C ) |
43 |
42
|
a1i |
|- ( U e. V -> J Fn ( C X. C ) ) |
44 |
|
inex1g |
|- ( U e. V -> ( U i^i DivRing ) e. _V ) |
45 |
1 44
|
eqeltrid |
|- ( U e. V -> C e. _V ) |
46 |
41 43 45
|
isssc |
|- ( U e. V -> ( F C_cat J <-> ( D C_ C /\ A. x e. D A. y e. D ( x F y ) C_ ( x J y ) ) ) ) |
47 |
19 38 46
|
mpbir2and |
|- ( U e. V -> F C_cat J ) |
48 |
1 2
|
drhmsubcALTV |
|- ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) ) |
49 |
|
eqid |
|- ( ( RingCatALTV ` U ) |`cat J ) = ( ( RingCatALTV ` U ) |`cat J ) |
50 |
49
|
subsubc |
|- ( J e. ( Subcat ` ( RingCatALTV ` U ) ) -> ( F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCatALTV ` U ) ) /\ F C_cat J ) ) ) |
51 |
48 50
|
syl |
|- ( U e. V -> ( F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) <-> ( F e. ( Subcat ` ( RingCatALTV ` U ) ) /\ F C_cat J ) ) ) |
52 |
12 47 51
|
mpbir2and |
|- ( U e. V -> F e. ( Subcat ` ( ( RingCatALTV ` U ) |`cat J ) ) ) |