Metamath Proof Explorer


Theorem fldhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of field homomorphisms is a "subcategory" of the category of division rings. (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c 𝐶 = ( 𝑈 ∩ DivRing )
drhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
fldhmsubcALTV.d 𝐷 = ( 𝑈 ∩ Field )
fldhmsubcALTV.f 𝐹 = ( 𝑟𝐷 , 𝑠𝐷 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion fldhmsubcALTV ( 𝑈𝑉𝐹 ∈ ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ) )

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c 𝐶 = ( 𝑈 ∩ DivRing )
2 drhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
3 fldhmsubcALTV.d 𝐷 = ( 𝑈 ∩ Field )
4 fldhmsubcALTV.f 𝐹 = ( 𝑟𝐷 , 𝑠𝐷 ↦ ( 𝑟 RingHom 𝑠 ) )
5 elin ( 𝑟 ∈ ( DivRing ∩ CRing ) ↔ ( 𝑟 ∈ DivRing ∧ 𝑟 ∈ CRing ) )
6 5 simprbi ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ CRing )
7 crngring ( 𝑟 ∈ CRing → 𝑟 ∈ Ring )
8 6 7 syl ( 𝑟 ∈ ( DivRing ∩ CRing ) → 𝑟 ∈ Ring )
9 df-field Field = ( DivRing ∩ CRing )
10 8 9 eleq2s ( 𝑟 ∈ Field → 𝑟 ∈ Ring )
11 10 rgen 𝑟 ∈ Field 𝑟 ∈ Ring
12 11 3 4 srhmsubcALTV ( 𝑈𝑉𝐹 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) )
13 inss1 ( DivRing ∩ CRing ) ⊆ DivRing
14 9 13 eqsstri Field ⊆ DivRing
15 sslin ( Field ⊆ DivRing → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) )
16 14 15 ax-mp ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing )
17 16 a1i ( 𝑈𝑉 → ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) )
18 3 1 sseq12i ( 𝐷𝐶 ↔ ( 𝑈 ∩ Field ) ⊆ ( 𝑈 ∩ DivRing ) )
19 17 18 sylibr ( 𝑈𝑉𝐷𝐶 )
20 ssidd ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ⊆ ( 𝑥 RingHom 𝑦 ) )
21 4 a1i ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝐹 = ( 𝑟𝐷 , 𝑠𝐷 ↦ ( 𝑟 RingHom 𝑠 ) ) )
22 oveq12 ( ( 𝑟 = 𝑥𝑠 = 𝑦 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) )
23 22 adantl ( ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) ∧ ( 𝑟 = 𝑥𝑠 = 𝑦 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑥 RingHom 𝑦 ) )
24 simprl ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝑥𝐷 )
25 simpr ( ( 𝑥𝐷𝑦𝐷 ) → 𝑦𝐷 )
26 25 adantl ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝑦𝐷 )
27 ovexd ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → ( 𝑥 RingHom 𝑦 ) ∈ V )
28 21 23 24 26 27 ovmpod ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑥 RingHom 𝑦 ) )
29 2 a1i ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) ) )
30 16 18 mpbir 𝐷𝐶
31 30 sseli ( 𝑥𝐷𝑥𝐶 )
32 31 ad2antrl ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝑥𝐶 )
33 30 sseli ( 𝑦𝐷𝑦𝐶 )
34 33 adantl ( ( 𝑥𝐷𝑦𝐷 ) → 𝑦𝐶 )
35 34 adantl ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → 𝑦𝐶 )
36 29 23 32 35 27 ovmpod ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → ( 𝑥 𝐽 𝑦 ) = ( 𝑥 RingHom 𝑦 ) )
37 20 28 36 3sstr4d ( ( 𝑈𝑉 ∧ ( 𝑥𝐷𝑦𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) )
38 37 ralrimivva ( 𝑈𝑉 → ∀ 𝑥𝐷𝑦𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) )
39 ovex ( 𝑟 RingHom 𝑠 ) ∈ V
40 4 39 fnmpoi 𝐹 Fn ( 𝐷 × 𝐷 )
41 40 a1i ( 𝑈𝑉𝐹 Fn ( 𝐷 × 𝐷 ) )
42 2 39 fnmpoi 𝐽 Fn ( 𝐶 × 𝐶 )
43 42 a1i ( 𝑈𝑉𝐽 Fn ( 𝐶 × 𝐶 ) )
44 inex1g ( 𝑈𝑉 → ( 𝑈 ∩ DivRing ) ∈ V )
45 1 44 eqeltrid ( 𝑈𝑉𝐶 ∈ V )
46 41 43 45 isssc ( 𝑈𝑉 → ( 𝐹cat 𝐽 ↔ ( 𝐷𝐶 ∧ ∀ 𝑥𝐷𝑦𝐷 ( 𝑥 𝐹 𝑦 ) ⊆ ( 𝑥 𝐽 𝑦 ) ) ) )
47 19 38 46 mpbir2and ( 𝑈𝑉𝐹cat 𝐽 )
48 1 2 drhmsubcALTV ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) )
49 eqid ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 )
50 49 subsubc ( 𝐽 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) ∧ 𝐹cat 𝐽 ) ) )
51 48 50 syl ( 𝑈𝑉 → ( 𝐹 ∈ ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ) ↔ ( 𝐹 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) ∧ 𝐹cat 𝐽 ) ) )
52 12 47 51 mpbir2and ( 𝑈𝑉𝐹 ∈ ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ) )