| Step | Hyp | Ref | Expression | 
						
							| 1 |  | drhmsubcALTV.c | ⊢ 𝐶  =  ( 𝑈  ∩  DivRing ) | 
						
							| 2 |  | drhmsubcALTV.j | ⊢ 𝐽  =  ( 𝑟  ∈  𝐶 ,  𝑠  ∈  𝐶  ↦  ( 𝑟  RingHom  𝑠 ) ) | 
						
							| 3 |  | fldhmsubcALTV.d | ⊢ 𝐷  =  ( 𝑈  ∩  Field ) | 
						
							| 4 |  | fldhmsubcALTV.f | ⊢ 𝐹  =  ( 𝑟  ∈  𝐷 ,  𝑠  ∈  𝐷  ↦  ( 𝑟  RingHom  𝑠 ) ) | 
						
							| 5 |  | elin | ⊢ ( 𝑟  ∈  ( DivRing  ∩  CRing )  ↔  ( 𝑟  ∈  DivRing  ∧  𝑟  ∈  CRing ) ) | 
						
							| 6 | 5 | simprbi | ⊢ ( 𝑟  ∈  ( DivRing  ∩  CRing )  →  𝑟  ∈  CRing ) | 
						
							| 7 |  | crngring | ⊢ ( 𝑟  ∈  CRing  →  𝑟  ∈  Ring ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑟  ∈  ( DivRing  ∩  CRing )  →  𝑟  ∈  Ring ) | 
						
							| 9 |  | df-field | ⊢ Field  =  ( DivRing  ∩  CRing ) | 
						
							| 10 | 8 9 | eleq2s | ⊢ ( 𝑟  ∈  Field  →  𝑟  ∈  Ring ) | 
						
							| 11 | 10 | rgen | ⊢ ∀ 𝑟  ∈  Field 𝑟  ∈  Ring | 
						
							| 12 | 11 3 4 | srhmsubcALTV | ⊢ ( 𝑈  ∈  𝑉  →  𝐹  ∈  ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) ) | 
						
							| 13 |  | inss1 | ⊢ ( DivRing  ∩  CRing )  ⊆  DivRing | 
						
							| 14 | 9 13 | eqsstri | ⊢ Field  ⊆  DivRing | 
						
							| 15 |  | sslin | ⊢ ( Field  ⊆  DivRing  →  ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) ) | 
						
							| 18 | 3 1 | sseq12i | ⊢ ( 𝐷  ⊆  𝐶  ↔  ( 𝑈  ∩  Field )  ⊆  ( 𝑈  ∩  DivRing ) ) | 
						
							| 19 | 17 18 | sylibr | ⊢ ( 𝑈  ∈  𝑉  →  𝐷  ⊆  𝐶 ) | 
						
							| 20 |  | ssidd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥  RingHom  𝑦 )  ⊆  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 21 | 4 | a1i | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝐹  =  ( 𝑟  ∈  𝐷 ,  𝑠  ∈  𝐷  ↦  ( 𝑟  RingHom  𝑠 ) ) ) | 
						
							| 22 |  | oveq12 | ⊢ ( ( 𝑟  =  𝑥  ∧  𝑠  =  𝑦 )  →  ( 𝑟  RingHom  𝑠 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 23 | 22 | adantl | ⊢ ( ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  ∧  ( 𝑟  =  𝑥  ∧  𝑠  =  𝑦 ) )  →  ( 𝑟  RingHom  𝑠 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 24 |  | simprl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐷 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑦  ∈  𝐷 ) | 
						
							| 27 |  | ovexd | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥  RingHom  𝑦 )  ∈  V ) | 
						
							| 28 | 21 23 24 26 27 | ovmpod | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 𝐹 𝑦 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 29 | 2 | a1i | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝐽  =  ( 𝑟  ∈  𝐶 ,  𝑠  ∈  𝐶  ↦  ( 𝑟  RingHom  𝑠 ) ) ) | 
						
							| 30 | 16 18 | mpbir | ⊢ 𝐷  ⊆  𝐶 | 
						
							| 31 | 30 | sseli | ⊢ ( 𝑥  ∈  𝐷  →  𝑥  ∈  𝐶 ) | 
						
							| 32 | 31 | ad2antrl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 33 | 30 | sseli | ⊢ ( 𝑦  ∈  𝐷  →  𝑦  ∈  𝐶 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐶 ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  𝑦  ∈  𝐶 ) | 
						
							| 36 | 29 23 32 35 27 | ovmpod | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 𝐽 𝑦 )  =  ( 𝑥  RingHom  𝑦 ) ) | 
						
							| 37 | 20 28 36 | 3sstr4d | ⊢ ( ( 𝑈  ∈  𝑉  ∧  ( 𝑥  ∈  𝐷  ∧  𝑦  ∈  𝐷 ) )  →  ( 𝑥 𝐹 𝑦 )  ⊆  ( 𝑥 𝐽 𝑦 ) ) | 
						
							| 38 | 37 | ralrimivva | ⊢ ( 𝑈  ∈  𝑉  →  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 𝐹 𝑦 )  ⊆  ( 𝑥 𝐽 𝑦 ) ) | 
						
							| 39 |  | ovex | ⊢ ( 𝑟  RingHom  𝑠 )  ∈  V | 
						
							| 40 | 4 39 | fnmpoi | ⊢ 𝐹  Fn  ( 𝐷  ×  𝐷 ) | 
						
							| 41 | 40 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  𝐹  Fn  ( 𝐷  ×  𝐷 ) ) | 
						
							| 42 | 2 39 | fnmpoi | ⊢ 𝐽  Fn  ( 𝐶  ×  𝐶 ) | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑈  ∈  𝑉  →  𝐽  Fn  ( 𝐶  ×  𝐶 ) ) | 
						
							| 44 |  | inex1g | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  DivRing )  ∈  V ) | 
						
							| 45 | 1 44 | eqeltrid | ⊢ ( 𝑈  ∈  𝑉  →  𝐶  ∈  V ) | 
						
							| 46 | 41 43 45 | isssc | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐹  ⊆cat  𝐽  ↔  ( 𝐷  ⊆  𝐶  ∧  ∀ 𝑥  ∈  𝐷 ∀ 𝑦  ∈  𝐷 ( 𝑥 𝐹 𝑦 )  ⊆  ( 𝑥 𝐽 𝑦 ) ) ) ) | 
						
							| 47 | 19 38 46 | mpbir2and | ⊢ ( 𝑈  ∈  𝑉  →  𝐹  ⊆cat  𝐽 ) | 
						
							| 48 | 1 2 | drhmsubcALTV | ⊢ ( 𝑈  ∈  𝑉  →  𝐽  ∈  ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( ( RingCatALTV ‘ 𝑈 )  ↾cat  𝐽 )  =  ( ( RingCatALTV ‘ 𝑈 )  ↾cat  𝐽 ) | 
						
							| 50 | 49 | subsubc | ⊢ ( 𝐽  ∈  ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) )  →  ( 𝐹  ∈  ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 )  ↾cat  𝐽 ) )  ↔  ( 𝐹  ∈  ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) )  ∧  𝐹  ⊆cat  𝐽 ) ) ) | 
						
							| 51 | 48 50 | syl | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝐹  ∈  ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 )  ↾cat  𝐽 ) )  ↔  ( 𝐹  ∈  ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) )  ∧  𝐹  ⊆cat  𝐽 ) ) ) | 
						
							| 52 | 12 47 51 | mpbir2and | ⊢ ( 𝑈  ∈  𝑉  →  𝐹  ∈  ( Subcat ‘ ( ( RingCatALTV ‘ 𝑈 )  ↾cat  𝐽 ) ) ) |