| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcrescrhmALTV.u | ⊢ ( 𝜑  →  𝑈  ∈  𝑉 ) | 
						
							| 2 |  | rngcrescrhmALTV.c | ⊢ 𝐶  =  ( RngCatALTV ‘ 𝑈 ) | 
						
							| 3 |  | rngcrescrhmALTV.r | ⊢ ( 𝜑  →  𝑅  =  ( Ring  ∩  𝑈 ) ) | 
						
							| 4 |  | rngcrescrhmALTV.h | ⊢ 𝐻  =  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( 𝐶  ↾cat  𝐻 )  =  ( 𝐶  ↾cat  𝐻 ) | 
						
							| 6 | 2 | fvexi | ⊢ 𝐶  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  𝐶  ∈  V ) | 
						
							| 8 |  | incom | ⊢ ( Ring  ∩  𝑈 )  =  ( 𝑈  ∩  Ring ) | 
						
							| 9 | 3 8 | eqtrdi | ⊢ ( 𝜑  →  𝑅  =  ( 𝑈  ∩  Ring ) ) | 
						
							| 10 |  | inex1g | ⊢ ( 𝑈  ∈  𝑉  →  ( 𝑈  ∩  Ring )  ∈  V ) | 
						
							| 11 | 1 10 | syl | ⊢ ( 𝜑  →  ( 𝑈  ∩  Ring )  ∈  V ) | 
						
							| 12 | 9 11 | eqeltrd | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 13 |  | inss1 | ⊢ ( Ring  ∩  𝑈 )  ⊆  Ring | 
						
							| 14 | 3 13 | eqsstrdi | ⊢ ( 𝜑  →  𝑅  ⊆  Ring ) | 
						
							| 15 |  | xpss12 | ⊢ ( ( 𝑅  ⊆  Ring  ∧  𝑅  ⊆  Ring )  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 16 | 14 14 15 | syl2anc | ⊢ ( 𝜑  →  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) | 
						
							| 17 |  | rhmfn | ⊢  RingHom   Fn  ( Ring  ×  Ring ) | 
						
							| 18 |  | fnssresb | ⊢ (  RingHom   Fn  ( Ring  ×  Ring )  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) ) | 
						
							| 19 | 17 18 | mp1i | ⊢ ( 𝜑  →  ( (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 )  ↔  ( 𝑅  ×  𝑅 )  ⊆  ( Ring  ×  Ring ) ) ) | 
						
							| 20 | 16 19 | mpbird | ⊢ ( 𝜑  →  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 ) ) | 
						
							| 21 | 4 | fneq1i | ⊢ ( 𝐻  Fn  ( 𝑅  ×  𝑅 )  ↔  (  RingHom   ↾  ( 𝑅  ×  𝑅 ) )  Fn  ( 𝑅  ×  𝑅 ) ) | 
						
							| 22 | 20 21 | sylibr | ⊢ ( 𝜑  →  𝐻  Fn  ( 𝑅  ×  𝑅 ) ) | 
						
							| 23 | 5 7 12 22 | rescval2 | ⊢ ( 𝜑  →  ( 𝐶  ↾cat  𝐻 )  =  ( ( 𝐶  ↾s  𝑅 )  sSet  〈 ( Hom  ‘ ndx ) ,  𝐻 〉 ) ) |