Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) |
2 |
|
rngcrescrhmALTV.c |
⊢ 𝐶 = ( RngCatALTV ‘ 𝑈 ) |
3 |
|
rngcrescrhmALTV.r |
⊢ ( 𝜑 → 𝑅 = ( Ring ∩ 𝑈 ) ) |
4 |
|
rngcrescrhmALTV.h |
⊢ 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) |
5 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) |
6 |
|
ovex |
⊢ ( 𝑥 GrpHom 𝑦 ) ∈ V |
7 |
6
|
inex1 |
⊢ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ∈ V |
8 |
5 7
|
fnmpoi |
⊢ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) Fn ( 𝑅 × 𝑅 ) |
9 |
4
|
a1i |
⊢ ( 𝜑 → 𝐻 = ( RingHom ↾ ( 𝑅 × 𝑅 ) ) ) |
10 |
|
dfrhm2 |
⊢ RingHom = ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → RingHom = ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
12 |
11
|
reseq1d |
⊢ ( 𝜑 → ( RingHom ↾ ( 𝑅 × 𝑅 ) ) = ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) ) |
13 |
|
inss1 |
⊢ ( Ring ∩ 𝑈 ) ⊆ Ring |
14 |
3 13
|
eqsstrdi |
⊢ ( 𝜑 → 𝑅 ⊆ Ring ) |
15 |
|
resmpo |
⊢ ( ( 𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring ) → ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
16 |
14 14 15
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑥 ∈ Ring , 𝑦 ∈ Ring ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ↾ ( 𝑅 × 𝑅 ) ) = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
17 |
9 12 16
|
3eqtrd |
⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) ) |
18 |
17
|
fneq1d |
⊢ ( 𝜑 → ( 𝐻 Fn ( 𝑅 × 𝑅 ) ↔ ( 𝑥 ∈ 𝑅 , 𝑦 ∈ 𝑅 ↦ ( ( 𝑥 GrpHom 𝑦 ) ∩ ( ( mulGrp ‘ 𝑥 ) MndHom ( mulGrp ‘ 𝑦 ) ) ) ) Fn ( 𝑅 × 𝑅 ) ) ) |
19 |
8 18
|
mpbiri |
⊢ ( 𝜑 → 𝐻 Fn ( 𝑅 × 𝑅 ) ) |