Step |
Hyp |
Ref |
Expression |
1 |
|
rngcrescrhmALTV.u |
|- ( ph -> U e. V ) |
2 |
|
rngcrescrhmALTV.c |
|- C = ( RngCatALTV ` U ) |
3 |
|
rngcrescrhmALTV.r |
|- ( ph -> R = ( Ring i^i U ) ) |
4 |
|
rngcrescrhmALTV.h |
|- H = ( RingHom |` ( R X. R ) ) |
5 |
|
eqid |
|- ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |
6 |
|
ovex |
|- ( x GrpHom y ) e. _V |
7 |
6
|
inex1 |
|- ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) e. _V |
8 |
5 7
|
fnmpoi |
|- ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) Fn ( R X. R ) |
9 |
4
|
a1i |
|- ( ph -> H = ( RingHom |` ( R X. R ) ) ) |
10 |
|
dfrhm2 |
|- RingHom = ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |
11 |
10
|
a1i |
|- ( ph -> RingHom = ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
12 |
11
|
reseq1d |
|- ( ph -> ( RingHom |` ( R X. R ) ) = ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) ) |
13 |
|
inss1 |
|- ( Ring i^i U ) C_ Ring |
14 |
3 13
|
eqsstrdi |
|- ( ph -> R C_ Ring ) |
15 |
|
resmpo |
|- ( ( R C_ Ring /\ R C_ Ring ) -> ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
16 |
14 14 15
|
syl2anc |
|- ( ph -> ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
17 |
9 12 16
|
3eqtrd |
|- ( ph -> H = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
18 |
17
|
fneq1d |
|- ( ph -> ( H Fn ( R X. R ) <-> ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) Fn ( R X. R ) ) ) |
19 |
8 18
|
mpbiri |
|- ( ph -> H Fn ( R X. R ) ) |