| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rngcrescrhmALTV.u |  |-  ( ph -> U e. V ) | 
						
							| 2 |  | rngcrescrhmALTV.c |  |-  C = ( RngCatALTV ` U ) | 
						
							| 3 |  | rngcrescrhmALTV.r |  |-  ( ph -> R = ( Ring i^i U ) ) | 
						
							| 4 |  | rngcrescrhmALTV.h |  |-  H = ( RingHom |` ( R X. R ) ) | 
						
							| 5 |  | eqid |  |-  ( C |`cat H ) = ( C |`cat H ) | 
						
							| 6 | 2 | fvexi |  |-  C e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ph -> C e. _V ) | 
						
							| 8 |  | incom |  |-  ( Ring i^i U ) = ( U i^i Ring ) | 
						
							| 9 | 3 8 | eqtrdi |  |-  ( ph -> R = ( U i^i Ring ) ) | 
						
							| 10 |  | inex1g |  |-  ( U e. V -> ( U i^i Ring ) e. _V ) | 
						
							| 11 | 1 10 | syl |  |-  ( ph -> ( U i^i Ring ) e. _V ) | 
						
							| 12 | 9 11 | eqeltrd |  |-  ( ph -> R e. _V ) | 
						
							| 13 |  | inss1 |  |-  ( Ring i^i U ) C_ Ring | 
						
							| 14 | 3 13 | eqsstrdi |  |-  ( ph -> R C_ Ring ) | 
						
							| 15 |  | xpss12 |  |-  ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 16 | 14 14 15 | syl2anc |  |-  ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) | 
						
							| 17 |  | rhmfn |  |-  RingHom Fn ( Ring X. Ring ) | 
						
							| 18 |  | fnssresb |  |-  ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) | 
						
							| 19 | 17 18 | mp1i |  |-  ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) | 
						
							| 20 | 16 19 | mpbird |  |-  ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) | 
						
							| 21 | 4 | fneq1i |  |-  ( H Fn ( R X. R ) <-> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( ph -> H Fn ( R X. R ) ) | 
						
							| 23 | 5 7 12 22 | rescval2 |  |-  ( ph -> ( C |`cat H ) = ( ( C |`s R ) sSet <. ( Hom ` ndx ) , H >. ) ) |