Metamath Proof Explorer


Theorem flfneii

Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flfneii.x 𝑋 = 𝐽
Assertion flfneii ( ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑁 )

Proof

Step Hyp Ref Expression
1 flfneii.x 𝑋 = 𝐽
2 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
3 flfnei ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 ) ) )
4 2 3 syl3an1b ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 ) ) )
5 4 simplbda ( ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 )
6 5 3adant3 ( ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 )
7 sseq2 ( 𝑛 = 𝑁 → ( ( 𝐹𝑠 ) ⊆ 𝑛 ↔ ( 𝐹𝑠 ) ⊆ 𝑁 ) )
8 7 rexbidv ( 𝑛 = 𝑁 → ( ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 ↔ ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑁 ) )
9 8 rspcv ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 → ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑁 ) )
10 9 3ad2ant3 ( ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑛 → ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑁 ) )
11 6 10 mpd ( ( ( 𝐽 ∈ Top ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌𝑋 ) ∧ 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ∃ 𝑠𝐿 ( 𝐹𝑠 ) ⊆ 𝑁 )