| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modvalr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  mod  𝐵 )  =  ( 𝐴  −  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 ) ) ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  −  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 ) )  =  ( 𝐴  mod  𝐵 ) ) | 
						
							| 3 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | rerpdivcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 6 |  | flcl | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℤ ) | 
						
							| 7 | 6 | zcnd | ⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ ) | 
						
							| 9 |  | rpcn | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℂ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℂ ) | 
						
							| 11 | 8 10 | mulcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 )  ∈  ℂ ) | 
						
							| 12 |  | modcl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  mod  𝐵 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  mod  𝐵 )  ∈  ℂ ) | 
						
							| 14 | 4 11 13 | subaddd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  −  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 ) )  =  ( 𝐴  mod  𝐵 )  ↔  ( ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 )  +  ( 𝐴  mod  𝐵 ) )  =  𝐴 ) ) | 
						
							| 15 | 2 14 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ·  𝐵 )  +  ( 𝐴  mod  𝐵 ) )  =  𝐴 ) |