Metamath Proof Explorer


Theorem flval2

Description: An alternate way to define the floor (greatest integer) function. (Contributed by NM, 16-Nov-2004)

Ref Expression
Assertion flval2 ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) )

Proof

Step Hyp Ref Expression
1 flle ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 )
2 flge ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) )
3 2 biimpd ( ( 𝐴 ∈ ℝ ∧ 𝑦 ∈ ℤ ) → ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) )
4 3 ralrimiva ( 𝐴 ∈ ℝ → ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) )
5 flcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℤ )
6 zmax ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) )
7 breq1 ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑥𝐴 ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) )
8 breq2 ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( 𝑦𝑥𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) )
9 8 imbi2d ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑦𝐴𝑦𝑥 ) ↔ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) )
10 9 ralbidv ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ↔ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) )
11 7 10 anbi12d ( 𝑥 = ( ⌊ ‘ 𝐴 ) → ( ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ↔ ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ) )
12 11 riota2 ( ( ( ⌊ ‘ 𝐴 ) ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) )
13 5 6 12 syl2anc ( 𝐴 ∈ ℝ → ( ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦 ≤ ( ⌊ ‘ 𝐴 ) ) ) ↔ ( 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) ) )
14 1 4 13 mpbi2and ( 𝐴 ∈ ℝ → ( 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) = ( ⌊ ‘ 𝐴 ) )
15 14 eqcomd ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( 𝑥 ∈ ℤ ( 𝑥𝐴 ∧ ∀ 𝑦 ∈ ℤ ( 𝑦𝐴𝑦𝑥 ) ) ) )