Metamath Proof Explorer


Theorem fracge0

Description: The fractional part of a real number is nonnegative. (Contributed by NM, 17-Jul-2008)

Ref Expression
Assertion fracge0 ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 flle ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 )
2 reflcl ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ∈ ℝ )
3 subge0 ( ( 𝐴 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ) → ( 0 ≤ ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) )
4 2 3 mpdan ( 𝐴 ∈ ℝ → ( 0 ≤ ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) ↔ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) )
5 1 4 mpbird ( 𝐴 ∈ ℝ → 0 ≤ ( 𝐴 − ( ⌊ ‘ 𝐴 ) ) )