Step |
Hyp |
Ref |
Expression |
1 |
|
frege109.x |
⊢ 𝑋 ∈ 𝑈 |
2 |
|
frege109.r |
⊢ 𝑅 ∈ 𝑉 |
3 |
|
frege75 |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ∀ 𝑧 ( 𝑦 𝑅 𝑧 → 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) → 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) |
4 |
|
vex |
⊢ 𝑦 ∈ V |
5 |
|
vex |
⊢ 𝑧 ∈ V |
6 |
1 4 5 2
|
frege108 |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦 → ( 𝑦 𝑅 𝑧 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ) ) |
7 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦 ↔ 〈 𝑋 , 𝑦 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
8 |
1
|
elexi |
⊢ 𝑋 ∈ V |
9 |
8 4
|
elimasn |
⊢ ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑦 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
10 |
7 9
|
bitr4i |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦 ↔ 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) |
11 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ↔ 〈 𝑋 , 𝑧 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
12 |
8 5
|
elimasn |
⊢ ( 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑧 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
13 |
11 12
|
bitr4i |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ↔ 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) |
14 |
13
|
imbi2i |
⊢ ( ( 𝑦 𝑅 𝑧 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ) ↔ ( 𝑦 𝑅 𝑧 → 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) |
15 |
6 10 14
|
3imtr3i |
⊢ ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( 𝑦 𝑅 𝑧 → 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) |
16 |
15
|
alrimiv |
⊢ ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ∀ 𝑧 ( 𝑦 𝑅 𝑧 → 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) |
17 |
3 16
|
mpg |
⊢ 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) |