Metamath Proof Explorer


Theorem frege109

Description: The property of belonging to the R -sequence beginning with X is hereditary in the R -sequence. Proposition 109 of Frege1879 p. 74. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege109.x 𝑋𝑈
frege109.r 𝑅𝑉
Assertion frege109 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } )

Proof

Step Hyp Ref Expression
1 frege109.x 𝑋𝑈
2 frege109.r 𝑅𝑉
3 frege75 ( ∀ 𝑦 ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ∀ 𝑧 ( 𝑦 𝑅 𝑧𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) → 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) )
4 vex 𝑦 ∈ V
5 vex 𝑧 ∈ V
6 1 4 5 2 frege108 ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦 → ( 𝑦 𝑅 𝑧𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ) )
7 df-br ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦 ↔ ⟨ 𝑋 , 𝑦 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
8 1 elexi 𝑋 ∈ V
9 8 4 elimasn ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑦 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
10 7 9 bitr4i ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑦𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) )
11 df-br ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ↔ ⟨ 𝑋 , 𝑧 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
12 8 5 elimasn ( 𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑧 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
13 11 12 bitr4i ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) )
14 13 imbi2i ( ( 𝑦 𝑅 𝑧𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑧 ) ↔ ( 𝑦 𝑅 𝑧𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) )
15 6 10 14 3imtr3i ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( 𝑦 𝑅 𝑧𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) )
16 15 alrimiv ( 𝑦 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ∀ 𝑧 ( 𝑦 𝑅 𝑧𝑧 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) )
17 3 16 mpg 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } )