Metamath Proof Explorer


Theorem frege110

Description: Proposition 110 of Frege1879 p. 75. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege110.x 𝑋𝐴
frege110.y 𝑌𝐵
frege110.m 𝑀𝐶
frege110.r 𝑅𝐷
Assertion frege110 ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) )

Proof

Step Hyp Ref Expression
1 frege110.x 𝑋𝐴
2 frege110.y 𝑌𝐵
3 frege110.m 𝑀𝐶
4 frege110.r 𝑅𝐷
5 1 4 frege109 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } )
6 imaundir ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) = ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) )
7 fvex ( t+ ‘ 𝑅 ) ∈ V
8 imaexg ( ( t+ ‘ 𝑅 ) ∈ V → ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V )
9 7 8 ax-mp ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V
10 imai ( I “ { 𝑋 } ) = { 𝑋 }
11 snex { 𝑋 } ∈ V
12 10 11 eqeltri ( I “ { 𝑋 } ) ∈ V
13 9 12 unex ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) ) ∈ V
14 6 13 eqeltri ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ∈ V
15 2 3 4 14 frege78 ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) )
16 1 elexi 𝑋 ∈ V
17 vex 𝑎 ∈ V
18 16 17 elimasn ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑎 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
19 df-br ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ↔ ⟨ 𝑋 , 𝑎 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
20 18 19 bitr4i ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 )
21 20 imbi2i ( ( 𝑌 𝑅 𝑎𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) )
22 21 albii ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) )
23 3 elexi 𝑀 ∈ V
24 16 23 elimasn ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
25 df-br ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ↔ ⟨ 𝑋 , 𝑀 ⟩ ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) )
26 24 25 bitr4i ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 )
27 26 imbi2i ( ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) )
28 15 22 27 3imtr3g ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) )
29 5 28 ax-mp ( ∀ 𝑎 ( 𝑌 𝑅 𝑎𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) )