Step |
Hyp |
Ref |
Expression |
1 |
|
frege110.x |
⊢ 𝑋 ∈ 𝐴 |
2 |
|
frege110.y |
⊢ 𝑌 ∈ 𝐵 |
3 |
|
frege110.m |
⊢ 𝑀 ∈ 𝐶 |
4 |
|
frege110.r |
⊢ 𝑅 ∈ 𝐷 |
5 |
1 4
|
frege109 |
⊢ 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) |
6 |
|
imaundir |
⊢ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) = ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) ) |
7 |
|
fvex |
⊢ ( t+ ‘ 𝑅 ) ∈ V |
8 |
|
imaexg |
⊢ ( ( t+ ‘ 𝑅 ) ∈ V → ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V ) |
9 |
7 8
|
ax-mp |
⊢ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V |
10 |
|
imai |
⊢ ( I “ { 𝑋 } ) = { 𝑋 } |
11 |
|
snex |
⊢ { 𝑋 } ∈ V |
12 |
10 11
|
eqeltri |
⊢ ( I “ { 𝑋 } ) ∈ V |
13 |
9 12
|
unex |
⊢ ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) ) ∈ V |
14 |
6 13
|
eqeltri |
⊢ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ∈ V |
15 |
2 3 4 14
|
frege78 |
⊢ ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) ) |
16 |
1
|
elexi |
⊢ 𝑋 ∈ V |
17 |
|
vex |
⊢ 𝑎 ∈ V |
18 |
16 17
|
elimasn |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
19 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ↔ 〈 𝑋 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
20 |
18 19
|
bitr4i |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) |
21 |
20
|
imbi2i |
⊢ ( ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
22 |
21
|
albii |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
23 |
3
|
elexi |
⊢ 𝑀 ∈ V |
24 |
16 23
|
elimasn |
⊢ ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑀 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
25 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ↔ 〈 𝑋 , 𝑀 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
26 |
24 25
|
bitr4i |
⊢ ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) |
27 |
26
|
imbi2i |
⊢ ( ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) |
28 |
15 22 27
|
3imtr3g |
⊢ ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) ) |
29 |
5 28
|
ax-mp |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) |