| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frege110.x |
⊢ 𝑋 ∈ 𝐴 |
| 2 |
|
frege110.y |
⊢ 𝑌 ∈ 𝐵 |
| 3 |
|
frege110.m |
⊢ 𝑀 ∈ 𝐶 |
| 4 |
|
frege110.r |
⊢ 𝑅 ∈ 𝐷 |
| 5 |
1 4
|
frege109 |
⊢ 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) |
| 6 |
|
imaundir |
⊢ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) = ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) ) |
| 7 |
|
fvex |
⊢ ( t+ ‘ 𝑅 ) ∈ V |
| 8 |
|
imaexg |
⊢ ( ( t+ ‘ 𝑅 ) ∈ V → ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V ) |
| 9 |
7 8
|
ax-mp |
⊢ ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∈ V |
| 10 |
|
imai |
⊢ ( I “ { 𝑋 } ) = { 𝑋 } |
| 11 |
|
snex |
⊢ { 𝑋 } ∈ V |
| 12 |
10 11
|
eqeltri |
⊢ ( I “ { 𝑋 } ) ∈ V |
| 13 |
9 12
|
unex |
⊢ ( ( ( t+ ‘ 𝑅 ) “ { 𝑋 } ) ∪ ( I “ { 𝑋 } ) ) ∈ V |
| 14 |
6 13
|
eqeltri |
⊢ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ∈ V |
| 15 |
2 3 4 14
|
frege78 |
⊢ ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ) ) |
| 16 |
1
|
elexi |
⊢ 𝑋 ∈ V |
| 17 |
|
vex |
⊢ 𝑎 ∈ V |
| 18 |
16 17
|
elimasn |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 19 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ↔ 〈 𝑋 , 𝑎 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 20 |
18 19
|
bitr4i |
⊢ ( 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) |
| 21 |
20
|
imbi2i |
⊢ ( ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
| 22 |
21
|
albii |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑎 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) ) |
| 23 |
3
|
elexi |
⊢ 𝑀 ∈ V |
| 24 |
16 23
|
elimasn |
⊢ ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 〈 𝑋 , 𝑀 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 25 |
|
df-br |
⊢ ( 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ↔ 〈 𝑋 , 𝑀 〉 ∈ ( ( t+ ‘ 𝑅 ) ∪ I ) ) |
| 26 |
24 25
|
bitr4i |
⊢ ( 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ↔ 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) |
| 27 |
26
|
imbi2i |
⊢ ( ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑀 ∈ ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) ) ↔ ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) |
| 28 |
15 22 27
|
3imtr3g |
⊢ ( 𝑅 hereditary ( ( ( t+ ‘ 𝑅 ) ∪ I ) “ { 𝑋 } ) → ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) ) |
| 29 |
5 28
|
ax-mp |
⊢ ( ∀ 𝑎 ( 𝑌 𝑅 𝑎 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑎 ) → ( 𝑌 ( t+ ‘ 𝑅 ) 𝑀 → 𝑋 ( ( t+ ‘ 𝑅 ) ∪ I ) 𝑀 ) ) |