Metamath Proof Explorer


Theorem frege110

Description: Proposition 110 of Frege1879 p. 75. (Contributed by RP, 7-Jul-2020) (Proof modification is discouraged.)

Ref Expression
Hypotheses frege110.x X A
frege110.y Y B
frege110.m M C
frege110.r R D
Assertion frege110 a Y R a X t+ R I a Y t+ R M X t+ R I M

Proof

Step Hyp Ref Expression
1 frege110.x X A
2 frege110.y Y B
3 frege110.m M C
4 frege110.r R D
5 1 4 frege109 R hereditary t+ R I X
6 imaundir t+ R I X = t+ R X I X
7 fvex t+ R V
8 imaexg t+ R V t+ R X V
9 7 8 ax-mp t+ R X V
10 imai I X = X
11 snex X V
12 10 11 eqeltri I X V
13 9 12 unex t+ R X I X V
14 6 13 eqeltri t+ R I X V
15 2 3 4 14 frege78 R hereditary t+ R I X a Y R a a t+ R I X Y t+ R M M t+ R I X
16 1 elexi X V
17 vex a V
18 16 17 elimasn a t+ R I X X a t+ R I
19 df-br X t+ R I a X a t+ R I
20 18 19 bitr4i a t+ R I X X t+ R I a
21 20 imbi2i Y R a a t+ R I X Y R a X t+ R I a
22 21 albii a Y R a a t+ R I X a Y R a X t+ R I a
23 3 elexi M V
24 16 23 elimasn M t+ R I X X M t+ R I
25 df-br X t+ R I M X M t+ R I
26 24 25 bitr4i M t+ R I X X t+ R I M
27 26 imbi2i Y t+ R M M t+ R I X Y t+ R M X t+ R I M
28 15 22 27 3imtr3g R hereditary t+ R I X a Y R a X t+ R I a Y t+ R M X t+ R I M
29 5 28 ax-mp a Y R a X t+ R I a Y t+ R M X t+ R I M