Description: Replace antecedent in antecedent. Proposition 21 of Frege1879 p. 40. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege21 | ⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → 𝜃 ) → ( ( 𝜃 → 𝜓 ) → 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege9 | ⊢ ( ( 𝜑 → 𝜃 ) → ( ( 𝜃 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) | |
2 | frege19 | ⊢ ( ( ( 𝜑 → 𝜃 ) → ( ( 𝜃 → 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) → ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → 𝜃 ) → ( ( 𝜃 → 𝜓 ) → 𝜒 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( ( 𝜑 → 𝜓 ) → 𝜒 ) → ( ( 𝜑 → 𝜃 ) → ( ( 𝜃 → 𝜓 ) → 𝜒 ) ) ) |