Metamath Proof Explorer


Theorem frege21

Description: Replace antecedent in antecedent. Proposition 21 of Frege1879 p. 40. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege21 ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜃 ) → ( ( 𝜃𝜓 ) → 𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 frege9 ( ( 𝜑𝜃 ) → ( ( 𝜃𝜓 ) → ( 𝜑𝜓 ) ) )
2 frege19 ( ( ( 𝜑𝜃 ) → ( ( 𝜃𝜓 ) → ( 𝜑𝜓 ) ) ) → ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜃 ) → ( ( 𝜃𝜓 ) → 𝜒 ) ) ) )
3 1 2 ax-mp ( ( ( 𝜑𝜓 ) → 𝜒 ) → ( ( 𝜑𝜃 ) → ( ( 𝜃𝜓 ) → 𝜒 ) ) )