Metamath Proof Explorer


Theorem frege21

Description: Replace antecedent in antecedent. Proposition 21 of Frege1879 p. 40. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege21
|- ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> th ) -> ( ( th -> ps ) -> ch ) ) )

Proof

Step Hyp Ref Expression
1 frege9
 |-  ( ( ph -> th ) -> ( ( th -> ps ) -> ( ph -> ps ) ) )
2 frege19
 |-  ( ( ( ph -> th ) -> ( ( th -> ps ) -> ( ph -> ps ) ) ) -> ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> th ) -> ( ( th -> ps ) -> ch ) ) ) )
3 1 2 ax-mp
 |-  ( ( ( ph -> ps ) -> ch ) -> ( ( ph -> th ) -> ( ( th -> ps ) -> ch ) ) )