Metamath Proof Explorer


Theorem frege57a

Description: Analogue of frege57aid . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege57a ( ( 𝜑𝜓 ) → ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege52a ( ( 𝜓𝜑 ) → ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) )
2 frege56a ( ( ( 𝜓𝜑 ) → ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) ) → ( ( 𝜑𝜓 ) → ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) ) )
3 1 2 ax-mp ( ( 𝜑𝜓 ) → ( if- ( 𝜓 , 𝜒 , 𝜃 ) → if- ( 𝜑 , 𝜒 , 𝜃 ) ) )