Metamath Proof Explorer


Theorem frege57a

Description: Analogue of frege57aid . Proposition 57 of Frege1879 p. 51. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege57a
|- ( ( ph <-> ps ) -> ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) )

Proof

Step Hyp Ref Expression
1 ax-frege52a
 |-  ( ( ps <-> ph ) -> ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) )
2 frege56a
 |-  ( ( ( ps <-> ph ) -> ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) ) -> ( ( ph <-> ps ) -> ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) ) )
3 1 2 ax-mp
 |-  ( ( ph <-> ps ) -> ( if- ( ps , ch , th ) -> if- ( ph , ch , th ) ) )