Step |
Hyp |
Ref |
Expression |
1 |
|
frsucmpt2w.1 |
⊢ 𝐹 = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
2 |
|
frsucmpt2w.2 |
⊢ ( 𝑦 = 𝑥 → 𝐸 = 𝐶 ) |
3 |
|
frsucmpt2w.3 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → 𝐸 = 𝐷 ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐴 |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐵 |
6 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
7 |
2
|
cbvmptv |
⊢ ( 𝑦 ∈ V ↦ 𝐸 ) = ( 𝑥 ∈ V ↦ 𝐶 ) |
8 |
|
rdgeq1 |
⊢ ( ( 𝑦 ∈ V ↦ 𝐸 ) = ( 𝑥 ∈ V ↦ 𝐶 ) → rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ) |
9 |
7 8
|
ax-mp |
⊢ rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) = rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) |
10 |
9
|
reseq1i |
⊢ ( rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ 𝐶 ) , 𝐴 ) ↾ ω ) |
11 |
1 10
|
eqtr4i |
⊢ 𝐹 = ( rec ( ( 𝑦 ∈ V ↦ 𝐸 ) , 𝐴 ) ↾ ω ) |
12 |
4 5 6 11 3
|
frsucmpt |
⊢ ( ( 𝐵 ∈ ω ∧ 𝐷 ∈ 𝑉 ) → ( 𝐹 ‘ suc 𝐵 ) = 𝐷 ) |