| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fsumshftd.1 | ⊢ ( 𝜑  →  𝐾  ∈  ℤ ) | 
						
							| 2 |  | fsumshftd.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | fsumshftd.3 | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | fsumshftd.4 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 5 |  | fsumshftd.5 | ⊢ ( ( 𝜑  ∧  𝑗  =  ( 𝑘  −  𝐾 ) )  →  𝐴  =  𝐵 ) | 
						
							| 6 |  | csbeq1a | ⊢ ( 𝑗  =  𝑤  →  𝐴  =  ⦋ 𝑤  /  𝑗 ⦌ 𝐴 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑤 𝐴 | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑗 ⦋ 𝑤  /  𝑗 ⦌ 𝐴 | 
						
							| 9 | 6 7 8 | cbvsum | ⊢ Σ 𝑗  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  Σ 𝑤  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑤  /  𝑗 ⦌ 𝐴 | 
						
							| 10 |  | nfv | ⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑤  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 11 | 8 | nfel1 | ⊢ Ⅎ 𝑗 ⦋ 𝑤  /  𝑗 ⦌ 𝐴  ∈  ℂ | 
						
							| 12 | 10 11 | nfim | ⊢ Ⅎ 𝑗 ( ( 𝜑  ∧  𝑤  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 13 |  | eleq1w | ⊢ ( 𝑗  =  𝑤  →  ( 𝑗  ∈  ( 𝑀 ... 𝑁 )  ↔  𝑤  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑗  =  𝑤  →  ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  ↔  ( 𝜑  ∧  𝑤  ∈  ( 𝑀 ... 𝑁 ) ) ) ) | 
						
							| 15 | 6 | eleq1d | ⊢ ( 𝑗  =  𝑤  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑤  /  𝑗 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 16 | 14 15 | imbi12d | ⊢ ( 𝑗  =  𝑤  →  ( ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑤  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝐴  ∈  ℂ ) ) ) | 
						
							| 17 | 12 16 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑤  ∈  ( 𝑀 ... 𝑁 ) )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 18 |  | csbeq1 | ⊢ ( 𝑤  =  ( 𝑘  −  𝐾 )  →  ⦋ 𝑤  /  𝑗 ⦌ 𝐴  =  ⦋ ( 𝑘  −  𝐾 )  /  𝑗 ⦌ 𝐴 ) | 
						
							| 19 | 1 2 3 17 18 | fsumshft | ⊢ ( 𝜑  →  Σ 𝑤  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑤  /  𝑗 ⦌ 𝐴  =  Σ 𝑘  ∈  ( ( 𝑀  +  𝐾 ) ... ( 𝑁  +  𝐾 ) ) ⦋ ( 𝑘  −  𝐾 )  /  𝑗 ⦌ 𝐴 ) | 
						
							| 20 |  | ovexd | ⊢ ( 𝜑  →  ( 𝑘  −  𝐾 )  ∈  V ) | 
						
							| 21 | 20 5 | csbied | ⊢ ( 𝜑  →  ⦋ ( 𝑘  −  𝐾 )  /  𝑗 ⦌ 𝐴  =  𝐵 ) | 
						
							| 22 | 21 | sumeq2sdv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  ( ( 𝑀  +  𝐾 ) ... ( 𝑁  +  𝐾 ) ) ⦋ ( 𝑘  −  𝐾 )  /  𝑗 ⦌ 𝐴  =  Σ 𝑘  ∈  ( ( 𝑀  +  𝐾 ) ... ( 𝑁  +  𝐾 ) ) 𝐵 ) | 
						
							| 23 | 19 22 | eqtrd | ⊢ ( 𝜑  →  Σ 𝑤  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑤  /  𝑗 ⦌ 𝐴  =  Σ 𝑘  ∈  ( ( 𝑀  +  𝐾 ) ... ( 𝑁  +  𝐾 ) ) 𝐵 ) | 
						
							| 24 | 9 23 | eqtrid | ⊢ ( 𝜑  →  Σ 𝑗  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  Σ 𝑘  ∈  ( ( 𝑀  +  𝐾 ) ... ( 𝑁  +  𝐾 ) ) 𝐵 ) |