Metamath Proof Explorer


Theorem fthres2b

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthres2b.a 𝐴 = ( Base ‘ 𝐶 )
fthres2b.h 𝐻 = ( Hom ‘ 𝐶 )
fthres2b.r ( 𝜑𝑅 ∈ ( Subcat ‘ 𝐷 ) )
fthres2b.s ( 𝜑𝑅 Fn ( 𝑆 × 𝑆 ) )
fthres2b.1 ( 𝜑𝐹 : 𝐴𝑆 )
fthres2b.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ) )
Assertion fthres2b ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺𝐹 ( 𝐶 Faith ( 𝐷cat 𝑅 ) ) 𝐺 ) )

Proof

Step Hyp Ref Expression
1 fthres2b.a 𝐴 = ( Base ‘ 𝐶 )
2 fthres2b.h 𝐻 = ( Hom ‘ 𝐶 )
3 fthres2b.r ( 𝜑𝑅 ∈ ( Subcat ‘ 𝐷 ) )
4 fthres2b.s ( 𝜑𝑅 Fn ( 𝑆 × 𝑆 ) )
5 fthres2b.1 ( 𝜑𝐹 : 𝐴𝑆 )
6 fthres2b.2 ( ( 𝜑 ∧ ( 𝑥𝐴𝑦𝐴 ) ) → ( 𝑥 𝐺 𝑦 ) : 𝑌 ⟶ ( ( 𝐹𝑥 ) 𝑅 ( 𝐹𝑦 ) ) )
7 1 2 3 4 5 6 funcres2b ( 𝜑 → ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺𝐹 ( 𝐶 Func ( 𝐷cat 𝑅 ) ) 𝐺 ) )
8 7 anbi1d ( 𝜑 → ( ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) ↔ ( 𝐹 ( 𝐶 Func ( 𝐷cat 𝑅 ) ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) ) )
9 1 isfth ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) )
10 1 isfth ( 𝐹 ( 𝐶 Faith ( 𝐷cat 𝑅 ) ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func ( 𝐷cat 𝑅 ) ) 𝐺 ∧ ∀ 𝑥𝐴𝑦𝐴 Fun ( 𝑥 𝐺 𝑦 ) ) )
11 8 9 10 3bitr4g ( 𝜑 → ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺𝐹 ( 𝐶 Faith ( 𝐷cat 𝑅 ) ) 𝐺 ) )