Metamath Proof Explorer


Theorem fthres2b

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses fthres2b.a A=BaseC
fthres2b.h H=HomC
fthres2b.r φRSubcatD
fthres2b.s φRFnS×S
fthres2b.1 φF:AS
fthres2b.2 φxAyAxGy:YFxRFy
Assertion fthres2b φFCFaithDGFCFaithDcatRG

Proof

Step Hyp Ref Expression
1 fthres2b.a A=BaseC
2 fthres2b.h H=HomC
3 fthres2b.r φRSubcatD
4 fthres2b.s φRFnS×S
5 fthres2b.1 φF:AS
6 fthres2b.2 φxAyAxGy:YFxRFy
7 1 2 3 4 5 6 funcres2b φFCFuncDGFCFuncDcatRG
8 7 anbi1d φFCFuncDGxAyAFunxGy-1FCFuncDcatRGxAyAFunxGy-1
9 1 isfth FCFaithDGFCFuncDGxAyAFunxGy-1
10 1 isfth FCFaithDcatRGFCFuncDcatRGxAyAFunxGy-1
11 8 9 10 3bitr4g φFCFaithDGFCFaithDcatRG