Metamath Proof Explorer


Theorem fthres2c

Description: Condition for a faithful functor to also be a faithful functor into the restriction. (Contributed by Mario Carneiro, 30-Jan-2017)

Ref Expression
Hypotheses fthres2c.a A=BaseC
fthres2c.e E=D𝑠S
fthres2c.d φDCat
fthres2c.r φSV
fthres2c.1 φF:AS
Assertion fthres2c φFCFaithDGFCFaithEG

Proof

Step Hyp Ref Expression
1 fthres2c.a A=BaseC
2 fthres2c.e E=D𝑠S
3 fthres2c.d φDCat
4 fthres2c.r φSV
5 fthres2c.1 φF:AS
6 1 2 3 4 5 funcres2c φFCFuncDGFCFuncEG
7 6 anbi1d φFCFuncDGxAyAFunxGy-1FCFuncEGxAyAFunxGy-1
8 1 isfth FCFaithDGFCFuncDGxAyAFunxGy-1
9 1 isfth FCFaithEGFCFuncEGxAyAFunxGy-1
10 7 8 9 3bitr4g φFCFaithDGFCFaithEG