Metamath Proof Explorer


Theorem fucofulem1

Description: Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses fucofulem1.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
fucofulem1.2 ( ( 𝜑 ∧ ( 𝜃𝜏 ) ) → 𝜂 )
fucofulem1.3 𝜒
fucofulem1.4 ( ( 𝜑𝜂 ) → 𝜃 )
fucofulem1.5 ( ( 𝜑𝜂 ) → 𝜏 )
Assertion fucofulem1 ( 𝜑 → ( 𝜓𝜂 ) )

Proof

Step Hyp Ref Expression
1 fucofulem1.1 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
2 fucofulem1.2 ( ( 𝜑 ∧ ( 𝜃𝜏 ) ) → 𝜂 )
3 fucofulem1.3 𝜒
4 fucofulem1.4 ( ( 𝜑𝜂 ) → 𝜃 )
5 fucofulem1.5 ( ( 𝜑𝜂 ) → 𝜏 )
6 simpl ( ( 𝜑𝜓 ) → 𝜑 )
7 1 biimpa ( ( 𝜑𝜓 ) → ( 𝜒𝜃𝜏 ) )
8 7 simp2d ( ( 𝜑𝜓 ) → 𝜃 )
9 7 simp3d ( ( 𝜑𝜓 ) → 𝜏 )
10 6 8 9 2 syl12anc ( ( 𝜑𝜓 ) → 𝜂 )
11 simpl ( ( 𝜑𝜂 ) → 𝜑 )
12 3 a1i ( ( 𝜑𝜂 ) → 𝜒 )
13 1 biimpar ( ( 𝜑 ∧ ( 𝜒𝜃𝜏 ) ) → 𝜓 )
14 11 12 4 5 13 syl13anc ( ( 𝜑𝜂 ) → 𝜓 )
15 10 14 impbida ( 𝜑 → ( 𝜓𝜂 ) )