Step |
Hyp |
Ref |
Expression |
1 |
|
fucofulem1.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
2 |
|
fucofulem1.2 |
⊢ ( ( 𝜑 ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) |
3 |
|
fucofulem1.3 |
⊢ 𝜒 |
4 |
|
fucofulem1.4 |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜃 ) |
5 |
|
fucofulem1.5 |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) |
6 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
7 |
1
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
8 |
7
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
9 |
7
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
10 |
6 8 9 2
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜂 ) |
11 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜑 ) |
12 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) |
13 |
1
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜓 ) |
14 |
11 12 4 5 13
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜓 ) |
15 |
10 14
|
impbida |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜂 ) ) |