| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofulem1.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
| 2 |
|
fucofulem1.2 |
⊢ ( ( 𝜑 ∧ ( 𝜃 ∧ 𝜏 ) ) → 𝜂 ) |
| 3 |
|
fucofulem1.3 |
⊢ 𝜒 |
| 4 |
|
fucofulem1.4 |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜃 ) |
| 5 |
|
fucofulem1.5 |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜏 ) |
| 6 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 7 |
1
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
| 8 |
7
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜃 ) |
| 9 |
7
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜏 ) |
| 10 |
6 8 9 2
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜂 ) |
| 11 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜑 ) |
| 12 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) |
| 13 |
1
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) → 𝜓 ) |
| 14 |
11 12 4 5 13
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜓 ) |
| 15 |
10 14
|
impbida |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜂 ) ) |