Metamath Proof Explorer
Description: Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025)
|
|
Ref |
Expression |
|
Hypotheses |
fucofulem1.1 |
|
|
|
fucofulem1.2 |
|
|
|
fucofulem1.3 |
|
|
|
fucofulem1.4 |
|
|
|
fucofulem1.5 |
|
|
Assertion |
fucofulem1 |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fucofulem1.1 |
|
2 |
|
fucofulem1.2 |
|
3 |
|
fucofulem1.3 |
|
4 |
|
fucofulem1.4 |
|
5 |
|
fucofulem1.5 |
|
6 |
|
simpl |
|
7 |
1
|
biimpa |
|
8 |
7
|
simp2d |
|
9 |
7
|
simp3d |
|
10 |
6 8 9 2
|
syl12anc |
|
11 |
|
simpl |
|
12 |
3
|
a1i |
|
13 |
1
|
biimpar |
|
14 |
11 12 4 5 13
|
syl13anc |
|
15 |
10 14
|
impbida |
|