| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucofulem1.1 |
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
| 2 |
|
fucofulem1.2 |
|- ( ( ph /\ ( th /\ ta ) ) -> et ) |
| 3 |
|
fucofulem1.3 |
|- ch |
| 4 |
|
fucofulem1.4 |
|- ( ( ph /\ et ) -> th ) |
| 5 |
|
fucofulem1.5 |
|- ( ( ph /\ et ) -> ta ) |
| 6 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
| 7 |
1
|
biimpa |
|- ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) ) |
| 8 |
7
|
simp2d |
|- ( ( ph /\ ps ) -> th ) |
| 9 |
7
|
simp3d |
|- ( ( ph /\ ps ) -> ta ) |
| 10 |
6 8 9 2
|
syl12anc |
|- ( ( ph /\ ps ) -> et ) |
| 11 |
|
simpl |
|- ( ( ph /\ et ) -> ph ) |
| 12 |
3
|
a1i |
|- ( ( ph /\ et ) -> ch ) |
| 13 |
1
|
biimpar |
|- ( ( ph /\ ( ch /\ th /\ ta ) ) -> ps ) |
| 14 |
11 12 4 5 13
|
syl13anc |
|- ( ( ph /\ et ) -> ps ) |
| 15 |
10 14
|
impbida |
|- ( ph -> ( ps <-> et ) ) |