Metamath Proof Explorer


Theorem fucofulem1

Description: Lemma for proving functor theorems. (Contributed by Zhi Wang, 25-Sep-2025)

Ref Expression
Hypotheses fucofulem1.1
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
fucofulem1.2
|- ( ( ph /\ ( th /\ ta ) ) -> et )
fucofulem1.3
|- ch
fucofulem1.4
|- ( ( ph /\ et ) -> th )
fucofulem1.5
|- ( ( ph /\ et ) -> ta )
Assertion fucofulem1
|- ( ph -> ( ps <-> et ) )

Proof

Step Hyp Ref Expression
1 fucofulem1.1
 |-  ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
2 fucofulem1.2
 |-  ( ( ph /\ ( th /\ ta ) ) -> et )
3 fucofulem1.3
 |-  ch
4 fucofulem1.4
 |-  ( ( ph /\ et ) -> th )
5 fucofulem1.5
 |-  ( ( ph /\ et ) -> ta )
6 simpl
 |-  ( ( ph /\ ps ) -> ph )
7 1 biimpa
 |-  ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) )
8 7 simp2d
 |-  ( ( ph /\ ps ) -> th )
9 7 simp3d
 |-  ( ( ph /\ ps ) -> ta )
10 6 8 9 2 syl12anc
 |-  ( ( ph /\ ps ) -> et )
11 simpl
 |-  ( ( ph /\ et ) -> ph )
12 3 a1i
 |-  ( ( ph /\ et ) -> ch )
13 1 biimpar
 |-  ( ( ph /\ ( ch /\ th /\ ta ) ) -> ps )
14 11 12 4 5 13 syl13anc
 |-  ( ( ph /\ et ) -> ps )
15 10 14 impbida
 |-  ( ph -> ( ps <-> et ) )