Step |
Hyp |
Ref |
Expression |
1 |
|
fucofulem1.1 |
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) ) |
2 |
|
fucofulem1.2 |
|- ( ( ph /\ ( th /\ ta ) ) -> et ) |
3 |
|
fucofulem1.3 |
|- ch |
4 |
|
fucofulem1.4 |
|- ( ( ph /\ et ) -> th ) |
5 |
|
fucofulem1.5 |
|- ( ( ph /\ et ) -> ta ) |
6 |
|
simpl |
|- ( ( ph /\ ps ) -> ph ) |
7 |
1
|
biimpa |
|- ( ( ph /\ ps ) -> ( ch /\ th /\ ta ) ) |
8 |
7
|
simp2d |
|- ( ( ph /\ ps ) -> th ) |
9 |
7
|
simp3d |
|- ( ( ph /\ ps ) -> ta ) |
10 |
6 8 9 2
|
syl12anc |
|- ( ( ph /\ ps ) -> et ) |
11 |
|
simpl |
|- ( ( ph /\ et ) -> ph ) |
12 |
3
|
a1i |
|- ( ( ph /\ et ) -> ch ) |
13 |
1
|
biimpar |
|- ( ( ph /\ ( ch /\ th /\ ta ) ) -> ps ) |
14 |
11 12 4 5 13
|
syl13anc |
|- ( ( ph /\ et ) -> ps ) |
15 |
10 14
|
impbida |
|- ( ph -> ( ps <-> et ) ) |