Database GRAPH THEORY Undirected graphs Vertex degree fusgrvtxdgonume  
				
		 
		
			
		 
		Description:   The number of vertices of odd degree is even in a finite simple graph.
       Proposition 1.2.1 in Diestel  p. 5.  See also remark about equation (2)
       in section I.1 in Bollobas  p. 4.  (Contributed by AV , 27-Dec-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						finsumvtxdgeven.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					
						finsumvtxdgeven.i ⊢  𝐼   =  ( iEdg ‘ 𝐺  )  
					
						finsumvtxdgeven.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
				
					Assertion 
					fusgrvtxdgonume ⊢   ( 𝐺   ∈  FinUSGraph  →  2  ∥  ( ♯ ‘ { 𝑣   ∈  𝑉   ∣  ¬  2  ∥  ( 𝐷  ‘ 𝑣  ) } ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							finsumvtxdgeven.v ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						
							2 
								
							 
							finsumvtxdgeven.i ⊢  𝐼   =  ( iEdg ‘ 𝐺  )  
						
							3 
								
							 
							finsumvtxdgeven.d ⊢  𝐷   =  ( VtxDeg ‘ 𝐺  )  
						
							4 
								1  2 
							 
							fusgrfupgrfs ⊢  ( 𝐺   ∈  FinUSGraph  →  ( 𝐺   ∈  UPGraph  ∧  𝑉   ∈  Fin  ∧  𝐼   ∈  Fin ) )  
						
							5 
								1  2  3 
							 
							vtxdgoddnumeven ⊢  ( ( 𝐺   ∈  UPGraph  ∧  𝑉   ∈  Fin  ∧  𝐼   ∈  Fin )  →  2  ∥  ( ♯ ‘ { 𝑣   ∈  𝑉   ∣  ¬  2  ∥  ( 𝐷  ‘ 𝑣  ) } ) )  
						
							6 
								4  5 
							 
							syl ⊢  ( 𝐺   ∈  FinUSGraph  →  2  ∥  ( ♯ ‘ { 𝑣   ∈  𝑉   ∣  ¬  2  ∥  ( 𝐷  ‘ 𝑣  ) } ) )