Metamath Proof Explorer


Theorem fusgrvtxdgonume

Description: The number of vertices of odd degree is even in a finite simple graph. Proposition 1.2.1 in Diestel p. 5. See also remark about equation (2) in section I.1 in Bollobas p. 4. (Contributed by AV, 27-Dec-2021)

Ref Expression
Hypotheses finsumvtxdgeven.v V = Vtx G
finsumvtxdgeven.i I = iEdg G
finsumvtxdgeven.d D = VtxDeg G
Assertion fusgrvtxdgonume G FinUSGraph 2 v V | ¬ 2 D v

Proof

Step Hyp Ref Expression
1 finsumvtxdgeven.v V = Vtx G
2 finsumvtxdgeven.i I = iEdg G
3 finsumvtxdgeven.d D = VtxDeg G
4 1 2 fusgrfupgrfs G FinUSGraph G UPGraph V Fin I Fin
5 1 2 3 vtxdgoddnumeven G UPGraph V Fin I Fin 2 v V | ¬ 2 D v
6 4 5 syl G FinUSGraph 2 v V | ¬ 2 D v