Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdgeven.v |
|
2 |
|
finsumvtxdgeven.i |
|
3 |
|
finsumvtxdgeven.d |
|
4 |
1 2 3
|
finsumvtxdgeven |
|
5 |
|
incom |
|
6 |
|
rabnc |
|
7 |
5 6
|
eqtri |
|
8 |
7
|
a1i |
|
9 |
|
rabxm |
|
10 |
9
|
equncomi |
|
11 |
10
|
a1i |
|
12 |
|
simp2 |
|
13 |
3
|
fveq1i |
|
14 |
|
dmfi |
|
15 |
14
|
3ad2ant3 |
|
16 |
|
eqid |
|
17 |
1 2 16
|
vtxdgfisnn0 |
|
18 |
15 17
|
sylan |
|
19 |
18
|
nn0cnd |
|
20 |
13 19
|
eqeltrid |
|
21 |
8 11 12 20
|
fsumsplit |
|
22 |
21
|
breq2d |
|
23 |
|
rabfi |
|
24 |
23
|
3ad2ant2 |
|
25 |
|
elrabi |
|
26 |
15 25 17
|
syl2an |
|
27 |
26
|
nn0zd |
|
28 |
13 27
|
eqeltrid |
|
29 |
24 28
|
fsumzcl |
|
30 |
29
|
adantr |
|
31 |
|
fveq2 |
|
32 |
31
|
breq2d |
|
33 |
32
|
notbid |
|
34 |
33
|
elrab |
|
35 |
34
|
simprbi |
|
36 |
35
|
adantl |
|
37 |
24 28 36
|
sumodd |
|
38 |
37
|
notbid |
|
39 |
38
|
biimpa |
|
40 |
|
rabfi |
|
41 |
40
|
3ad2ant2 |
|
42 |
|
elrabi |
|
43 |
15 42 17
|
syl2an |
|
44 |
43
|
nn0zd |
|
45 |
13 44
|
eqeltrid |
|
46 |
41 45
|
fsumzcl |
|
47 |
46
|
adantr |
|
48 |
32
|
elrab |
|
49 |
48
|
simprbi |
|
50 |
49
|
adantl |
|
51 |
41 45 50
|
sumeven |
|
52 |
51
|
adantr |
|
53 |
|
opeo |
|
54 |
30 39 47 52 53
|
syl22anc |
|
55 |
54
|
ex |
|
56 |
55
|
con4d |
|
57 |
22 56
|
sylbid |
|
58 |
4 57
|
mpd |
|