| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finsumvtxdgeven.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | finsumvtxdgeven.i | ⊢ 𝐼  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | finsumvtxdgeven.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | finsumvtxdgeven | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  2  ∥  Σ 𝑤  ∈  𝑉 ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 5 |  | incom | ⊢ ( { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∩  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  =  ( { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∩  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) | 
						
							| 6 |  | rabnc | ⊢ ( { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∩  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  =  ∅ | 
						
							| 7 | 5 6 | eqtri | ⊢ ( { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∩  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  =  ∅ | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∩  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  =  ∅ ) | 
						
							| 9 |  | rabxm | ⊢ 𝑉  =  ( { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∪  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) | 
						
							| 10 | 9 | equncomi | ⊢ 𝑉  =  ( { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∪  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  𝑉  =  ( { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∪  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) ) | 
						
							| 12 |  | simp2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  𝑉  ∈  Fin ) | 
						
							| 13 | 3 | fveq1i | ⊢ ( 𝐷 ‘ 𝑤 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 ) | 
						
							| 14 |  | dmfi | ⊢ ( 𝐼  ∈  Fin  →  dom  𝐼  ∈  Fin ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  dom  𝐼  ∈  Fin ) | 
						
							| 16 |  | eqid | ⊢ dom  𝐼  =  dom  𝐼 | 
						
							| 17 | 1 2 16 | vtxdgfisnn0 | ⊢ ( ( dom  𝐼  ∈  Fin  ∧  𝑤  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 18 | 15 17 | sylan | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 19 | 18 | nn0cnd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  𝑉 )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℂ ) | 
						
							| 20 | 13 19 | eqeltrid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  𝑉 )  →  ( 𝐷 ‘ 𝑤 )  ∈  ℂ ) | 
						
							| 21 | 8 11 12 20 | fsumsplit | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  Σ 𝑤  ∈  𝑉 ( 𝐷 ‘ 𝑤 )  =  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 22 | 21 | breq2d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( 2  ∥  Σ 𝑤  ∈  𝑉 ( 𝐷 ‘ 𝑤 )  ↔  2  ∥  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) | 
						
							| 23 |  | rabfi | ⊢ ( 𝑉  ∈  Fin  →  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∈  Fin ) | 
						
							| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∈  Fin ) | 
						
							| 25 |  | elrabi | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  →  𝑤  ∈  𝑉 ) | 
						
							| 26 | 15 25 17 | syl2an | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 27 | 26 | nn0zd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 28 | 13 27 | eqeltrid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 29 | 24 28 | fsumzcl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) )  →  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 31 |  | fveq2 | ⊢ ( 𝑣  =  𝑤  →  ( 𝐷 ‘ 𝑣 )  =  ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 32 | 31 | breq2d | ⊢ ( 𝑣  =  𝑤  →  ( 2  ∥  ( 𝐷 ‘ 𝑣 )  ↔  2  ∥  ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 33 | 32 | notbid | ⊢ ( 𝑣  =  𝑤  →  ( ¬  2  ∥  ( 𝐷 ‘ 𝑣 )  ↔  ¬  2  ∥  ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 34 | 33 | elrab | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ↔  ( 𝑤  ∈  𝑉  ∧  ¬  2  ∥  ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 35 | 34 | simprbi | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) }  →  ¬  2  ∥  ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ¬  2  ∥  ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 37 | 24 28 36 | sumodd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( 2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  ↔  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 38 | 37 | notbid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  ↔  ¬  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 39 | 38 | biimpa | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) )  →  ¬  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 40 |  | rabfi | ⊢ ( 𝑉  ∈  Fin  →  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∈  Fin ) | 
						
							| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ∈  Fin ) | 
						
							| 42 |  | elrabi | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  →  𝑤  ∈  𝑉 ) | 
						
							| 43 | 15 42 17 | syl2an | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℕ0 ) | 
						
							| 44 | 43 | nn0zd | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 45 | 13 44 | eqeltrid | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 46 | 41 45 | fsumzcl | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) )  →  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ ) | 
						
							| 48 | 32 | elrab | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  ↔  ( 𝑤  ∈  𝑉  ∧  2  ∥  ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 49 | 48 | simprbi | ⊢ ( 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) }  →  2  ∥  ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 50 | 49 | adantl | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  2  ∥  ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 51 | 41 45 50 | sumeven | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) )  →  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) | 
						
							| 53 |  | opeo | ⊢ ( ( ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ  ∧  ¬  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) )  ∧  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  ∈  ℤ  ∧  2  ∥  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) )  →  ¬  2  ∥  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 54 | 30 39 47 52 53 | syl22anc | ⊢ ( ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  ∧  ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) )  →  ¬  2  ∥  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) | 
						
							| 55 | 54 | ex | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( ¬  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } )  →  ¬  2  ∥  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) ) ) ) | 
						
							| 56 | 55 | con4d | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( 2  ∥  ( Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 )  +  Σ 𝑤  ∈  { 𝑣  ∈  𝑉  ∣  2  ∥  ( 𝐷 ‘ 𝑣 ) } ( 𝐷 ‘ 𝑤 ) )  →  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) ) ) | 
						
							| 57 | 22 56 | sylbid | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  ( 2  ∥  Σ 𝑤  ∈  𝑉 ( 𝐷 ‘ 𝑤 )  →  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) ) ) | 
						
							| 58 | 4 57 | mpd | ⊢ ( ( 𝐺  ∈  UPGraph  ∧  𝑉  ∈  Fin  ∧  𝐼  ∈  Fin )  →  2  ∥  ( ♯ ‘ { 𝑣  ∈  𝑉  ∣  ¬  2  ∥  ( 𝐷 ‘ 𝑣 ) } ) ) |