| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finsumvtxdgeven.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | finsumvtxdgeven.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | finsumvtxdgeven.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 4 | 1 2 3 | finsumvtxdgeven |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ w e. V ( D ` w ) ) | 
						
							| 5 |  | incom |  |-  ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = ( { v e. V | 2 || ( D ` v ) } i^i { v e. V | -. 2 || ( D ` v ) } ) | 
						
							| 6 |  | rabnc |  |-  ( { v e. V | 2 || ( D ` v ) } i^i { v e. V | -. 2 || ( D ` v ) } ) = (/) | 
						
							| 7 | 5 6 | eqtri |  |-  ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = (/) | 
						
							| 8 | 7 | a1i |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( { v e. V | -. 2 || ( D ` v ) } i^i { v e. V | 2 || ( D ` v ) } ) = (/) ) | 
						
							| 9 |  | rabxm |  |-  V = ( { v e. V | 2 || ( D ` v ) } u. { v e. V | -. 2 || ( D ` v ) } ) | 
						
							| 10 | 9 | equncomi |  |-  V = ( { v e. V | -. 2 || ( D ` v ) } u. { v e. V | 2 || ( D ` v ) } ) | 
						
							| 11 | 10 | a1i |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> V = ( { v e. V | -. 2 || ( D ` v ) } u. { v e. V | 2 || ( D ` v ) } ) ) | 
						
							| 12 |  | simp2 |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> V e. Fin ) | 
						
							| 13 | 3 | fveq1i |  |-  ( D ` w ) = ( ( VtxDeg ` G ) ` w ) | 
						
							| 14 |  | dmfi |  |-  ( I e. Fin -> dom I e. Fin ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> dom I e. Fin ) | 
						
							| 16 |  | eqid |  |-  dom I = dom I | 
						
							| 17 | 1 2 16 | vtxdgfisnn0 |  |-  ( ( dom I e. Fin /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) | 
						
							| 18 | 15 17 | sylan |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) | 
						
							| 19 | 18 | nn0cnd |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( ( VtxDeg ` G ) ` w ) e. CC ) | 
						
							| 20 | 13 19 | eqeltrid |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. V ) -> ( D ` w ) e. CC ) | 
						
							| 21 | 8 11 12 20 | fsumsplit |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. V ( D ` w ) = ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) | 
						
							| 22 | 21 | breq2d |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || sum_ w e. V ( D ` w ) <-> 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) ) | 
						
							| 23 |  | rabfi |  |-  ( V e. Fin -> { v e. V | -. 2 || ( D ` v ) } e. Fin ) | 
						
							| 24 | 23 | 3ad2ant2 |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> { v e. V | -. 2 || ( D ` v ) } e. Fin ) | 
						
							| 25 |  | elrabi |  |-  ( w e. { v e. V | -. 2 || ( D ` v ) } -> w e. V ) | 
						
							| 26 | 15 25 17 | syl2an |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) | 
						
							| 27 | 26 | nn0zd |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. ZZ ) | 
						
							| 28 | 13 27 | eqeltrid |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> ( D ` w ) e. ZZ ) | 
						
							| 29 | 24 28 | fsumzcl |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ ) | 
						
							| 31 |  | fveq2 |  |-  ( v = w -> ( D ` v ) = ( D ` w ) ) | 
						
							| 32 | 31 | breq2d |  |-  ( v = w -> ( 2 || ( D ` v ) <-> 2 || ( D ` w ) ) ) | 
						
							| 33 | 32 | notbid |  |-  ( v = w -> ( -. 2 || ( D ` v ) <-> -. 2 || ( D ` w ) ) ) | 
						
							| 34 | 33 | elrab |  |-  ( w e. { v e. V | -. 2 || ( D ` v ) } <-> ( w e. V /\ -. 2 || ( D ` w ) ) ) | 
						
							| 35 | 34 | simprbi |  |-  ( w e. { v e. V | -. 2 || ( D ` v ) } -> -. 2 || ( D ` w ) ) | 
						
							| 36 | 35 | adantl |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | -. 2 || ( D ` v ) } ) -> -. 2 || ( D ` w ) ) | 
						
							| 37 | 24 28 36 | sumodd |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) <-> 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) ) | 
						
							| 38 | 37 | notbid |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) <-> -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) ) | 
						
							| 39 | 38 | biimpa |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) | 
						
							| 40 |  | rabfi |  |-  ( V e. Fin -> { v e. V | 2 || ( D ` v ) } e. Fin ) | 
						
							| 41 | 40 | 3ad2ant2 |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> { v e. V | 2 || ( D ` v ) } e. Fin ) | 
						
							| 42 |  | elrabi |  |-  ( w e. { v e. V | 2 || ( D ` v ) } -> w e. V ) | 
						
							| 43 | 15 42 17 | syl2an |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. NN0 ) | 
						
							| 44 | 43 | nn0zd |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( ( VtxDeg ` G ) ` w ) e. ZZ ) | 
						
							| 45 | 13 44 | eqeltrid |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> ( D ` w ) e. ZZ ) | 
						
							| 46 | 41 45 | fsumzcl |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ ) | 
						
							| 47 | 46 | adantr |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ ) | 
						
							| 48 | 32 | elrab |  |-  ( w e. { v e. V | 2 || ( D ` v ) } <-> ( w e. V /\ 2 || ( D ` w ) ) ) | 
						
							| 49 | 48 | simprbi |  |-  ( w e. { v e. V | 2 || ( D ` v ) } -> 2 || ( D ` w ) ) | 
						
							| 50 | 49 | adantl |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ w e. { v e. V | 2 || ( D ` v ) } ) -> 2 || ( D ` w ) ) | 
						
							| 51 | 41 45 50 | sumeven |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) | 
						
							| 53 |  | opeo |  |-  ( ( ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) e. ZZ /\ -. 2 || sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) ) /\ ( sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) e. ZZ /\ 2 || sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) | 
						
							| 54 | 30 39 47 52 53 | syl22anc |  |-  ( ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) /\ -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) | 
						
							| 55 | 54 | ex |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( -. 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) -> -. 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) ) ) | 
						
							| 56 | 55 | con4d |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || ( sum_ w e. { v e. V | -. 2 || ( D ` v ) } ( D ` w ) + sum_ w e. { v e. V | 2 || ( D ` v ) } ( D ` w ) ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) ) | 
						
							| 57 | 22 56 | sylbid |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 || sum_ w e. V ( D ` w ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) ) | 
						
							| 58 | 4 57 | mpd |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( # ` { v e. V | -. 2 || ( D ` v ) } ) ) |