| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finsumvtxdgeven.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | finsumvtxdgeven.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | finsumvtxdgeven.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 4 |  | hashcl |  |-  ( I e. Fin -> ( # ` I ) e. NN0 ) | 
						
							| 5 | 4 | 3ad2ant3 |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. NN0 ) | 
						
							| 6 | 5 | nn0zd |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. ZZ ) | 
						
							| 7 |  | eqidd |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) | 
						
							| 8 |  | 2teven |  |-  ( ( ( # ` I ) e. ZZ /\ ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) -> 2 || ( 2 x. ( # ` I ) ) ) | 
						
							| 9 | 6 7 8 | syl2anc |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( 2 x. ( # ` I ) ) ) | 
						
							| 10 | 1 2 3 | finsumvtxdg2size |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) | 
						
							| 11 | 9 10 | breqtrrd |  |-  ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ v e. V ( D ` v ) ) |