Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdgeven.v |
|- V = ( Vtx ` G ) |
2 |
|
finsumvtxdgeven.i |
|- I = ( iEdg ` G ) |
3 |
|
finsumvtxdgeven.d |
|- D = ( VtxDeg ` G ) |
4 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
5 |
4
|
3ad2ant3 |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. NN0 ) |
6 |
5
|
nn0zd |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( # ` I ) e. ZZ ) |
7 |
|
eqidd |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) |
8 |
|
2teven |
|- ( ( ( # ` I ) e. ZZ /\ ( 2 x. ( # ` I ) ) = ( 2 x. ( # ` I ) ) ) -> 2 || ( 2 x. ( # ` I ) ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || ( 2 x. ( # ` I ) ) ) |
10 |
1 2 3
|
finsumvtxdg2size |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> sum_ v e. V ( D ` v ) = ( 2 x. ( # ` I ) ) ) |
11 |
9 10
|
breqtrrd |
|- ( ( G e. UPGraph /\ V e. Fin /\ I e. Fin ) -> 2 || sum_ v e. V ( D ` v ) ) |