Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdgeven.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
finsumvtxdgeven.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
finsumvtxdgeven.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
4 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
5 |
4
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
6 |
5
|
nn0zd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
7 |
|
eqidd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
8 |
|
2teven |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℤ ∧ ( 2 · ( ♯ ‘ 𝐼 ) ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) → 2 ∥ ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
10 |
1 2 3
|
finsumvtxdg2size |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → Σ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝐼 ) ) ) |
11 |
9 10
|
breqtrrd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑉 ∈ Fin ∧ 𝐼 ∈ Fin ) → 2 ∥ Σ 𝑣 ∈ 𝑉 ( 𝐷 ‘ 𝑣 ) ) |