| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumeven.a |
|
| 2 |
|
sumeven.b |
|
| 3 |
|
sumeven.e |
|
| 4 |
|
sumeq1 |
|
| 5 |
4
|
breq2d |
|
| 6 |
|
sumeq1 |
|
| 7 |
6
|
breq2d |
|
| 8 |
|
sumeq1 |
|
| 9 |
8
|
breq2d |
|
| 10 |
|
sumeq1 |
|
| 11 |
10
|
breq2d |
|
| 12 |
|
z0even |
|
| 13 |
|
sum0 |
|
| 14 |
12 13
|
breqtrri |
|
| 15 |
14
|
a1i |
|
| 16 |
|
2z |
|
| 17 |
16
|
a1i |
|
| 18 |
|
ssfi |
|
| 19 |
18
|
expcom |
|
| 20 |
19
|
adantr |
|
| 21 |
1 20
|
mpan9 |
|
| 22 |
|
simpll |
|
| 23 |
|
ssel |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
adantl |
|
| 26 |
25
|
imp |
|
| 27 |
22 26 2
|
syl2anc |
|
| 28 |
21 27
|
fsumzcl |
|
| 29 |
|
eldifi |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
adantl |
|
| 32 |
2
|
adantlr |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
rspcsbela |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
17 28 35
|
3jca |
|
| 37 |
36
|
adantr |
|
| 38 |
3
|
ralrimiva |
|
| 39 |
|
nfcv |
|
| 40 |
|
nfcv |
|
| 41 |
|
nfcsb1v |
|
| 42 |
39 40 41
|
nfbr |
|
| 43 |
|
csbeq1a |
|
| 44 |
43
|
breq2d |
|
| 45 |
42 44
|
rspc |
|
| 46 |
29 38 45
|
syl2imc |
|
| 47 |
46
|
a1d |
|
| 48 |
47
|
imp32 |
|
| 49 |
48
|
anim1ci |
|
| 50 |
|
dvds2add |
|
| 51 |
37 49 50
|
sylc |
|
| 52 |
|
vex |
|
| 53 |
52
|
a1i |
|
| 54 |
|
eldif |
|
| 55 |
|
df-nel |
|
| 56 |
55
|
biimpri |
|
| 57 |
54 56
|
simplbiim |
|
| 58 |
57
|
adantl |
|
| 59 |
58
|
adantl |
|
| 60 |
|
simpll |
|
| 61 |
|
elun |
|
| 62 |
24
|
com12 |
|
| 63 |
|
elsni |
|
| 64 |
|
eleq1w |
|
| 65 |
30 64
|
imbitrrid |
|
| 66 |
63 65
|
syl |
|
| 67 |
62 66
|
jaoi |
|
| 68 |
67
|
com12 |
|
| 69 |
61 68
|
biimtrid |
|
| 70 |
69
|
adantl |
|
| 71 |
70
|
imp |
|
| 72 |
60 71 2
|
syl2anc |
|
| 73 |
72
|
ralrimiva |
|
| 74 |
|
fsumsplitsnun |
|
| 75 |
21 53 59 73 74
|
syl121anc |
|
| 76 |
75
|
adantr |
|
| 77 |
51 76
|
breqtrrd |
|
| 78 |
77
|
ex |
|
| 79 |
5 7 9 11 15 78 1
|
findcard2d |
|