Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fveleq | ⊢ ( 𝐴 = 𝐵 → ( ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐹 ‘ 𝐴 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ↔ ( 𝐹 ‘ 𝐵 ) ∈ 𝑃 ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ 𝑃 ) ) ) |