Step |
Hyp |
Ref |
Expression |
1 |
|
findfvcl.1 |
⊢ ( 𝜑 → ( 𝐹 ‘ ∅ ) ∈ 𝑃 ) |
2 |
|
findfvcl.2 |
⊢ ( 𝑦 ∈ ω → ( 𝜑 → ( ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 → ( 𝐹 ‘ suc 𝑦 ) ∈ 𝑃 ) ) ) |
3 |
|
fveleq |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ ∅ ) ∈ 𝑃 ) ) ) |
4 |
|
fveleq |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) ) ) |
5 |
|
fveleq |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜑 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ suc 𝑦 ) ∈ 𝑃 ) ) ) |
6 |
|
fveleq |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 → ( 𝐹 ‘ 𝑥 ) ∈ 𝑃 ) ↔ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ) ) ) |
7 |
2
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝜑 → ( 𝐹 ‘ 𝑦 ) ∈ 𝑃 ) → ( 𝜑 → ( 𝐹 ‘ suc 𝑦 ) ∈ 𝑃 ) ) ) |
8 |
3 4 5 6 1 7
|
finds |
⊢ ( 𝐴 ∈ ω → ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ 𝑃 ) ) |