Step |
Hyp |
Ref |
Expression |
1 |
|
findreccl.1 |
⊢ ( 𝑧 ∈ 𝑃 → ( 𝐺 ‘ 𝑧 ) ∈ 𝑃 ) |
2 |
|
rdg0g |
⊢ ( 𝐴 ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) = 𝐴 ) |
3 |
|
eleq1a |
⊢ ( 𝐴 ∈ 𝑃 → ( ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) = 𝐴 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) ∈ 𝑃 ) ) |
4 |
2 3
|
mpd |
⊢ ( 𝐴 ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) ∈ 𝑃 ) |
5 |
|
nnon |
⊢ ( 𝑦 ∈ ω → 𝑦 ∈ On ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑧 = ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) → ( ( 𝐺 ‘ 𝑧 ) ∈ 𝑃 ↔ ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 ) ) |
8 |
7 1
|
vtoclga |
⊢ ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 ) |
9 |
|
rdgsuc |
⊢ ( 𝑦 ∈ On → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) = ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑦 ∈ On → ( ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ↔ ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 ) ) |
11 |
8 10
|
syl5ibr |
⊢ ( 𝑦 ∈ On → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) ) |
12 |
5 11
|
syl |
⊢ ( 𝑦 ∈ ω → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) ) |
13 |
12
|
a1d |
⊢ ( 𝑦 ∈ ω → ( 𝐴 ∈ 𝑃 → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) ) ) |
14 |
4 13
|
findfvcl |
⊢ ( 𝐶 ∈ ω → ( 𝐴 ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) ) |