Metamath Proof Explorer


Theorem findreccl

Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008)

Ref Expression
Hypothesis findreccl.1 ( 𝑧𝑃 → ( 𝐺𝑧 ) ∈ 𝑃 )
Assertion findreccl ( 𝐶 ∈ ω → ( 𝐴𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 findreccl.1 ( 𝑧𝑃 → ( 𝐺𝑧 ) ∈ 𝑃 )
2 rdg0g ( 𝐴𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) = 𝐴 )
3 eleq1a ( 𝐴𝑃 → ( ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) = 𝐴 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) ∈ 𝑃 ) )
4 2 3 mpd ( 𝐴𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ ∅ ) ∈ 𝑃 )
5 nnon ( 𝑦 ∈ ω → 𝑦 ∈ On )
6 fveq2 ( 𝑧 = ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) → ( 𝐺𝑧 ) = ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) )
7 6 eleq1d ( 𝑧 = ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) → ( ( 𝐺𝑧 ) ∈ 𝑃 ↔ ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 ) )
8 7 1 vtoclga ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 )
9 rdgsuc ( 𝑦 ∈ On → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) = ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) )
10 9 eleq1d ( 𝑦 ∈ On → ( ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ↔ ( 𝐺 ‘ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ) ∈ 𝑃 ) )
11 8 10 syl5ibr ( 𝑦 ∈ On → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) )
12 5 11 syl ( 𝑦 ∈ ω → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) )
13 12 a1d ( 𝑦 ∈ ω → ( 𝐴𝑃 → ( ( rec ( 𝐺 , 𝐴 ) ‘ 𝑦 ) ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ suc 𝑦 ) ∈ 𝑃 ) ) )
14 4 13 findfvcl ( 𝐶 ∈ ω → ( 𝐴𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) )