| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findabrcl.1 |
⊢ ( 𝑧 ∈ 𝑃 → ( 𝐺 ‘ 𝑧 ) ∈ 𝑃 ) |
| 2 |
|
elex |
⊢ ( 𝐶 ∈ ω → 𝐶 ∈ V ) |
| 3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) |
| 5 |
|
fvex |
⊢ ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ V |
| 6 |
3 4 5
|
fvmpt |
⊢ ( 𝐶 ∈ V → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
| 7 |
2 6
|
syl |
⊢ ( 𝐶 ∈ ω → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
| 9 |
1
|
findreccl |
⊢ ( 𝐶 ∈ ω → ( 𝐴 ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) ) |
| 10 |
9
|
imp |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) |
| 11 |
8 10
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) ∈ 𝑃 ) |