Step |
Hyp |
Ref |
Expression |
1 |
|
findabrcl.1 |
⊢ ( 𝑧 ∈ 𝑃 → ( 𝐺 ‘ 𝑧 ) ∈ 𝑃 ) |
2 |
|
elex |
⊢ ( 𝐶 ∈ ω → 𝐶 ∈ V ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐶 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
4 |
|
eqid |
⊢ ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) |
5 |
|
fvex |
⊢ ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ V |
6 |
3 4 5
|
fvmpt |
⊢ ( 𝐶 ∈ V → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝐶 ∈ ω → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ) |
9 |
1
|
findreccl |
⊢ ( 𝐶 ∈ ω → ( 𝐴 ∈ 𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) ) |
10 |
9
|
imp |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) |
11 |
8 10
|
eqeltrd |
⊢ ( ( 𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) ∈ 𝑃 ) |