Metamath Proof Explorer


Theorem findabrcl

Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis findabrcl.1 ( 𝑧𝑃 → ( 𝐺𝑧 ) ∈ 𝑃 )
Assertion findabrcl ( ( 𝐶 ∈ ω ∧ 𝐴𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) ∈ 𝑃 )

Proof

Step Hyp Ref Expression
1 findabrcl.1 ( 𝑧𝑃 → ( 𝐺𝑧 ) ∈ 𝑃 )
2 elex ( 𝐶 ∈ ω → 𝐶 ∈ V )
3 fveq2 ( 𝑥 = 𝐶 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) )
4 eqid ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) = ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) )
5 fvex ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ V
6 3 4 5 fvmpt ( 𝐶 ∈ V → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) )
7 2 6 syl ( 𝐶 ∈ ω → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) )
8 7 adantr ( ( 𝐶 ∈ ω ∧ 𝐴𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) = ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) )
9 1 findreccl ( 𝐶 ∈ ω → ( 𝐴𝑃 → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 ) )
10 9 imp ( ( 𝐶 ∈ ω ∧ 𝐴𝑃 ) → ( rec ( 𝐺 , 𝐴 ) ‘ 𝐶 ) ∈ 𝑃 )
11 8 10 eqeltrd ( ( 𝐶 ∈ ω ∧ 𝐴𝑃 ) → ( ( 𝑥 ∈ V ↦ ( rec ( 𝐺 , 𝐴 ) ‘ 𝑥 ) ) ‘ 𝐶 ) ∈ 𝑃 )