Metamath Proof Explorer


Theorem findabrcl

Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis findabrcl.1 z P G z P
Assertion findabrcl C ω A P x V rec G A x C P

Proof

Step Hyp Ref Expression
1 findabrcl.1 z P G z P
2 elex C ω C V
3 fveq2 x = C rec G A x = rec G A C
4 eqid x V rec G A x = x V rec G A x
5 fvex rec G A C V
6 3 4 5 fvmpt C V x V rec G A x C = rec G A C
7 2 6 syl C ω x V rec G A x C = rec G A C
8 7 adantr C ω A P x V rec G A x C = rec G A C
9 1 findreccl C ω A P rec G A C P
10 9 imp C ω A P rec G A C P
11 8 10 eqeltrd C ω A P x V rec G A x C P