Metamath Proof Explorer


Theorem findabrcl

Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis findabrcl.1 zPGzP
Assertion findabrcl CωAPxVrecGAxCP

Proof

Step Hyp Ref Expression
1 findabrcl.1 zPGzP
2 elex CωCV
3 fveq2 x=CrecGAx=recGAC
4 eqid xVrecGAx=xVrecGAx
5 fvex recGACV
6 3 4 5 fvmpt CVxVrecGAxC=recGAC
7 2 6 syl CωxVrecGAxC=recGAC
8 7 adantr CωAPxVrecGAxC=recGAC
9 1 findreccl CωAPrecGACP
10 9 imp CωAPrecGACP
11 8 10 eqeltrd CωAPxVrecGAxCP