Step |
Hyp |
Ref |
Expression |
1 |
|
findabrcl.1 |
|- ( z e. P -> ( G ` z ) e. P ) |
2 |
|
elex |
|- ( C e. _om -> C e. _V ) |
3 |
|
fveq2 |
|- ( x = C -> ( rec ( G , A ) ` x ) = ( rec ( G , A ) ` C ) ) |
4 |
|
eqid |
|- ( x e. _V |-> ( rec ( G , A ) ` x ) ) = ( x e. _V |-> ( rec ( G , A ) ` x ) ) |
5 |
|
fvex |
|- ( rec ( G , A ) ` C ) e. _V |
6 |
3 4 5
|
fvmpt |
|- ( C e. _V -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) ) |
7 |
2 6
|
syl |
|- ( C e. _om -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) ) |
8 |
7
|
adantr |
|- ( ( C e. _om /\ A e. P ) -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) ) |
9 |
1
|
findreccl |
|- ( C e. _om -> ( A e. P -> ( rec ( G , A ) ` C ) e. P ) ) |
10 |
9
|
imp |
|- ( ( C e. _om /\ A e. P ) -> ( rec ( G , A ) ` C ) e. P ) |
11 |
8 10
|
eqeltrd |
|- ( ( C e. _om /\ A e. P ) -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) e. P ) |