Metamath Proof Explorer


Theorem findabrcl

Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008) (Revised by Mario Carneiro, 11-Sep-2015)

Ref Expression
Hypothesis findabrcl.1
|- ( z e. P -> ( G ` z ) e. P )
Assertion findabrcl
|- ( ( C e. _om /\ A e. P ) -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) e. P )

Proof

Step Hyp Ref Expression
1 findabrcl.1
 |-  ( z e. P -> ( G ` z ) e. P )
2 elex
 |-  ( C e. _om -> C e. _V )
3 fveq2
 |-  ( x = C -> ( rec ( G , A ) ` x ) = ( rec ( G , A ) ` C ) )
4 eqid
 |-  ( x e. _V |-> ( rec ( G , A ) ` x ) ) = ( x e. _V |-> ( rec ( G , A ) ` x ) )
5 fvex
 |-  ( rec ( G , A ) ` C ) e. _V
6 3 4 5 fvmpt
 |-  ( C e. _V -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) )
7 2 6 syl
 |-  ( C e. _om -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) )
8 7 adantr
 |-  ( ( C e. _om /\ A e. P ) -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) = ( rec ( G , A ) ` C ) )
9 1 findreccl
 |-  ( C e. _om -> ( A e. P -> ( rec ( G , A ) ` C ) e. P ) )
10 9 imp
 |-  ( ( C e. _om /\ A e. P ) -> ( rec ( G , A ) ` C ) e. P )
11 8 10 eqeltrd
 |-  ( ( C e. _om /\ A e. P ) -> ( ( x e. _V |-> ( rec ( G , A ) ` x ) ) ` C ) e. P )