Metamath Proof Explorer


Theorem findreccl

Description: Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008)

Ref Expression
Hypothesis findreccl.1 zPGzP
Assertion findreccl CωAPrecGACP

Proof

Step Hyp Ref Expression
1 findreccl.1 zPGzP
2 rdg0g APrecGA=A
3 eleq1a APrecGA=ArecGAP
4 2 3 mpd APrecGAP
5 nnon yωyOn
6 fveq2 z=recGAyGz=GrecGAy
7 6 eleq1d z=recGAyGzPGrecGAyP
8 7 1 vtoclga recGAyPGrecGAyP
9 rdgsuc yOnrecGAsucy=GrecGAy
10 9 eleq1d yOnrecGAsucyPGrecGAyP
11 8 10 imbitrrid yOnrecGAyPrecGAsucyP
12 5 11 syl yωrecGAyPrecGAsucyP
13 12 a1d yωAPrecGAyPrecGAsucyP
14 4 13 findfvcl CωAPrecGACP