Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Hoffman
Inferences for finite induction on generic function values
findreccl
Next ⟩
findabrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
findreccl
Description:
Please add description here.
(Contributed by
Jeff Hoffman
, 19-Feb-2008)
Ref
Expression
Hypothesis
findreccl.1
⊢
z
∈
P
→
G
⁡
z
∈
P
Assertion
findreccl
⊢
C
∈
ω
→
A
∈
P
→
rec
⁡
G
A
⁡
C
∈
P
Proof
Step
Hyp
Ref
Expression
1
findreccl.1
⊢
z
∈
P
→
G
⁡
z
∈
P
2
rdg0g
⊢
A
∈
P
→
rec
⁡
G
A
⁡
∅
=
A
3
eleq1a
⊢
A
∈
P
→
rec
⁡
G
A
⁡
∅
=
A
→
rec
⁡
G
A
⁡
∅
∈
P
4
2
3
mpd
⊢
A
∈
P
→
rec
⁡
G
A
⁡
∅
∈
P
5
nnon
⊢
y
∈
ω
→
y
∈
On
6
fveq2
⊢
z
=
rec
⁡
G
A
⁡
y
→
G
⁡
z
=
G
⁡
rec
⁡
G
A
⁡
y
7
6
eleq1d
⊢
z
=
rec
⁡
G
A
⁡
y
→
G
⁡
z
∈
P
↔
G
⁡
rec
⁡
G
A
⁡
y
∈
P
8
7
1
vtoclga
⊢
rec
⁡
G
A
⁡
y
∈
P
→
G
⁡
rec
⁡
G
A
⁡
y
∈
P
9
rdgsuc
⊢
y
∈
On
→
rec
⁡
G
A
⁡
suc
⁡
y
=
G
⁡
rec
⁡
G
A
⁡
y
10
9
eleq1d
⊢
y
∈
On
→
rec
⁡
G
A
⁡
suc
⁡
y
∈
P
↔
G
⁡
rec
⁡
G
A
⁡
y
∈
P
11
8
10
syl5ibr
⊢
y
∈
On
→
rec
⁡
G
A
⁡
y
∈
P
→
rec
⁡
G
A
⁡
suc
⁡
y
∈
P
12
5
11
syl
⊢
y
∈
ω
→
rec
⁡
G
A
⁡
y
∈
P
→
rec
⁡
G
A
⁡
suc
⁡
y
∈
P
13
12
a1d
⊢
y
∈
ω
→
A
∈
P
→
rec
⁡
G
A
⁡
y
∈
P
→
rec
⁡
G
A
⁡
suc
⁡
y
∈
P
14
4
13
findfvcl
⊢
C
∈
ω
→
A
∈
P
→
rec
⁡
G
A
⁡
C
∈
P