Metamath Proof Explorer


Theorem findfvcl

Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)

Ref Expression
Hypotheses findfvcl.1 φFP
findfvcl.2 yωφFyPFsucyP
Assertion findfvcl AωφFAP

Proof

Step Hyp Ref Expression
1 findfvcl.1 φFP
2 findfvcl.2 yωφFyPFsucyP
3 fveleq x=φFxPφFP
4 fveleq x=yφFxPφFyP
5 fveleq x=sucyφFxPφFsucyP
6 fveleq x=AφFxPφFAP
7 2 a2d yωφFyPφFsucyP
8 3 4 5 6 1 7 finds AωφFAP