Step |
Hyp |
Ref |
Expression |
1 |
|
findfvcl.1 |
|- ( ph -> ( F ` (/) ) e. P ) |
2 |
|
findfvcl.2 |
|- ( y e. _om -> ( ph -> ( ( F ` y ) e. P -> ( F ` suc y ) e. P ) ) ) |
3 |
|
fveleq |
|- ( x = (/) -> ( ( ph -> ( F ` x ) e. P ) <-> ( ph -> ( F ` (/) ) e. P ) ) ) |
4 |
|
fveleq |
|- ( x = y -> ( ( ph -> ( F ` x ) e. P ) <-> ( ph -> ( F ` y ) e. P ) ) ) |
5 |
|
fveleq |
|- ( x = suc y -> ( ( ph -> ( F ` x ) e. P ) <-> ( ph -> ( F ` suc y ) e. P ) ) ) |
6 |
|
fveleq |
|- ( x = A -> ( ( ph -> ( F ` x ) e. P ) <-> ( ph -> ( F ` A ) e. P ) ) ) |
7 |
2
|
a2d |
|- ( y e. _om -> ( ( ph -> ( F ` y ) e. P ) -> ( ph -> ( F ` suc y ) e. P ) ) ) |
8 |
3 4 5 6 1 7
|
finds |
|- ( A e. _om -> ( ph -> ( F ` A ) e. P ) ) |