Metamath Proof Explorer


Theorem fveleq

Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)

Ref Expression
Assertion fveleq
|- ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) )

Proof

Step Hyp Ref Expression
1 fveq2
 |-  ( A = B -> ( F ` A ) = ( F ` B ) )
2 1 eleq1d
 |-  ( A = B -> ( ( F ` A ) e. P <-> ( F ` B ) e. P ) )
3 2 imbi2d
 |-  ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) )