Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | fveleq | |- ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |- ( A = B -> ( F ` A ) = ( F ` B ) ) |
|
2 | 1 | eleq1d | |- ( A = B -> ( ( F ` A ) e. P <-> ( F ` B ) e. P ) ) |
3 | 2 | imbi2d | |- ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) ) |