Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fveleq | |- ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( A = B -> ( F ` A ) = ( F ` B ) ) |
|
| 2 | 1 | eleq1d | |- ( A = B -> ( ( F ` A ) e. P <-> ( F ` B ) e. P ) ) |
| 3 | 2 | imbi2d | |- ( A = B -> ( ( ph -> ( F ` A ) e. P ) <-> ( ph -> ( F ` B ) e. P ) ) ) |