Metamath Proof Explorer


Theorem fveleq

Description: Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008)

Ref Expression
Assertion fveleq A = B φ F A P φ F B P

Proof

Step Hyp Ref Expression
1 fveq2 A = B F A = F B
2 1 eleq1d A = B F A P F B P
3 2 imbi2d A = B φ F A P φ F B P