Metamath Proof Explorer


Theorem fvrcllb0d

Description: A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrcllb0d.r ( 𝜑𝑅 ∈ V )
Assertion fvrcllb0d ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( r* ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 fvrcllb0d.r ( 𝜑𝑅 ∈ V )
2 dfrcl4 r* = ( 𝑟 ∈ V ↦ 𝑛 ∈ { 0 , 1 } ( 𝑟𝑟 𝑛 ) )
3 prex { 0 , 1 } ∈ V
4 3 a1i ( 𝜑 → { 0 , 1 } ∈ V )
5 c0ex 0 ∈ V
6 5 prid1 0 ∈ { 0 , 1 }
7 6 a1i ( 𝜑 → 0 ∈ { 0 , 1 } )
8 2 1 4 7 fvmptiunrelexplb0d ( 𝜑 → ( I ↾ ( dom 𝑅 ∪ ran 𝑅 ) ) ⊆ ( r* ‘ 𝑅 ) )